genomic engineering
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Εμμανουέλα Τσαγκαράκη

Η παχυσαρκία και ο διαβήτης τύπου 2 (ΔΤ2) σχετίζονται με διαταραχές στην ομοιόσταση της γλυκόζης και των λιπιδίων η οποία ρυθμίζεται από την ινσουλίνη και προκαλεί σοβαρές επιπλοκές συμπεριλαμβανομένων καρδιαγγειακών νοσημάτων και στεατοηπατίτιδας. Ο συστημικός μεταβολισμός της γλυκόζης ρυθμίζεται από τους διακριτούς λιπώδεις ιστούς (fat depots), στις οποίες συμπεριλαμβάνονται δύο κυρίως τύποι λιπώδους ιστού το λευκό λίπος και το φαιό (ή καφέ) λίπος. Το μεν λευκό λίπος αποτελείται από τα «λευκά» λιποκύτταρα και έχει ρόλο αποθήκευσης της ενέργειας σε μορφή λιπιδίων ενώ το φαιό λίπος αποτελείται από τα «φαιά» και «μπεζ» λιποκύτταρα. Tα κύτταρα αυτά καταναλώνουν την αποθηκευμένη ενέργεια για την παραγωγή θερμότητας και εκφράζουν την πρωτεΐνη αποσύζευξης 1 (UCP1) καθώς και πλήθος εκκρινόμενων παραγόντων που ευνοούν τον μεταβολισμό. Έχει περιγραφή στη βιβλιογραφία ότι η μεταμόσχευση φαιού λιπώδους ιστού ή ποντικίσιων ή αθανατοποιημένων ανθρώπινων φαιών λιποκυττάρων σε παχύσαρκους μύες βελτιώνει την ανοχή στη γλυκόζη. Ωστόσο, η εφαρμογή μιας ανάλογης θεραπευτικής παρέμβασης στον άνθρωπο δεν έχει καταστεί δυνατή καθώς η διαθεσιμότητα των πρωτογενών ανθρώπινων φαιών/μπεζ λιποκυττάρων είναι εξαιρετικά περιορισμένη. Στην παρούσα διατριβή, χρησιμοποίησα μεθόδους πολλαπλασιασμού σε μεγάλη κλίματα ανθρώπινων πρόγονων λιποκυττάρων από εξαιρετικά μικρά δείγματα ανθρώπινου λιπώδους ιστού. Στα ανθρώπινα πρόδρομα λιποκύτταρα, παράλληλα με τα ποντικίσια, εφάρμοσα τροποποίηση του γονιδιώματος με τη χρήση ομαδοποιημένων με τακτά μεσοδιαστήματα σύντομων παλινδρομικών μοτίβων (CRISPR). O στόχος αυτής της γονιδιακής τροποποίησης είναι να απενεργοποιήσει γονίδια που φυσιολογικά παρεμποδίζουν τη μετατροπή των λιποκυττάρων από λευκά σε φαιά. Συνεπώς, η απώλεια της λειτουργικότητας αυτών των γονιδίων αναμένεται να προκαλέσει την μετατροπή των λευκών λιποκυττάρων σε φαιά που είναι ωφέλιμα για τον μεταβολισμό της γλυκόζης. Σημαντικοί δευτερεύοντες στόχοι της στρατηγικής της θεραπείας είναι η παράκαμψη της ανοσογονικότητας των συστατικών CRISPR και της γονιδιακής τροποποίησης σε ανεπιθύμητους ιστούς καθώς και η ελαχιστοποίηση της ανεπιθύμητης τροποποίησης σε περιοχές του γονιδιώματος εκτός των στοχευμένων. Στην παρούσα εργασία, ανέπτυξα και μεγιστοποίησα τη μέθοδο ex vivo μεταφοράς στα κύτταρα – στόχους (λιποκύτταρα) των συμπλεγμάτων στρεπτοκοκκικού Cas9 ενζύμου και στου οδηγού sgRNA, ούτως ώστε να επιτυγχάνεται η ταχύτατη διάσπασή τους αμέσως μετά την τροποποίηση του γονιδίου – στόχο. Για τη μεταφορά των συμπλεγμάτων αυτών, χρησιμοποιήθηκε η μέθοδος της ηλεκτροδιάτρησης με αποτελεσματικότητα τροποποίησης που πλησιάζει το 100%. Κατόπιν ελέγχου πλήθους υποψηφίων γονιδίων – στόχων που αναφέρονται στη βιβλιογραφία, εντοπίστηκε ως ο πλέον υποσχόμενος στόχος το γονίδιο της πρωτεΐνης 1 που αναγνωρίζει πυρηνικούς υποδοχείς (NRIP1). Τα λιποκύτταρα στα οποία απενεργοποιήθηκε το Nrip1 γονίδιο (NRIP1 Knock-out, NRIP1KO) επάγουν την έκφραση ενός «φαιού» γονιδιακού προφίλ το οποίο συμπεριλαμβάνει την πρωτεΐνη UCP1 και ορισμένους εκκρινόμενους παράγοντες. Στη συνέχεια, χαρακτήρισα in vitro το φαινότυπο των τροποποιημένων κυττάρων με πλήθος δοκιμασιών όπως έκφραση γνωστών γονιδίων που σχετίζονται με τη θερμογένεση, μιτοχονδριακή αναπνοή, οξέωση λιπιδίων, εκκρινομένους παράγοντες, δοκιμασία κατανάλωση οξυγόνου, έκφραση της πρωτεΐνης UCP1, τόσο στο ποντικίσια όσο και στο ανθρώπινα κύτταρα. Τέλος, τα βελτιστοποιημένα με CRISPR ποντικίσια ή ανθρώπινα «φαιά» λιποκύτταρα εμφυτεύθηκαν σε ποντίκια – λήπτες τα οποία λάμβαναν διατροφή εμπλουτισμένη σε λίπος για την πρόκληση διαβήτη τύπου 2. Τα εμφυτεύματα των τροποποιημένων κυττάρων έδειξαν μικρότερη συσσώρευση σωματικού λίπους μικρότερη συσσώρευση τριγλυκεριδίων στο ηπατικό παρέγχυμα καθώς επίσης βελτίωσαν την ανοχή στη γλυκόζη συγκριτικά με τα ποντίκια – μάρτυρες που έλαβαν εμφυτεύματα μη τροποποιημένων λιποκυττάρων. Παράλληλα, όπως απεδείχθη η παρουσία των συστατικών της CRISPR τροποποίησης ήταν παροδική στα κύτταρα-στόχους καθώς η ενδονουκλεάση Cas9 αποδομείται και δεν είναι ανιχνεύσιμη με ηλεκτροφόρηση ολικής πρωτεΐνης πριν τις εμφυτεύσεις. Τα ευρήματα αυτά υποδεικνύουν μια θεραπευτική στρατηγική για τη βελτίωση της ομοιόστασης του μεταβολισμού μέσω της γονιδιακής τροποποίησης με CRISPR ανθρώπινων λιποκυττάρων χωρίς την έκθεση του ασθενούς στα ανοσογόνα και δυνητικά επιβλαβή ένζυμο Cas9 και οδηγό sgRNA και άλλων οχημάτων μεταφοράς των συστατικών CRISPR.


2021 ◽  
pp. 100082
Author(s):  
Jos P.H. Smits ◽  
Luca D. Meesters ◽  
Berber G.W. Maste ◽  
Huiqing Zhou ◽  
Patrick L.J.M. Zeeuwen ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Shunsuke Kawasaki ◽  
Hiroki Ono ◽  
Moe Hirosawa ◽  
Takeru Kuwabara ◽  
Hirohide Saito

The complexity of synthetic genetic circuits relies on repertories of biological circuitry with high orthogonality. Although post-transcriptional circuitry relying on RNA-binding proteins (RBPs) qualifies as a repertory, the limited pool of regulatory devices hinders network modularity and scalability. Here we propose CaRTRIDGE (Cas-Responsive Translational Regulation Integratable into Diverse Genomic Engineering) to repurpose CRISPR-associated (Cas) proteins as translational modulators. We demonstrate that a set of Cas proteins are able to repress (OFF) or activate (ON) the translation of mRNAs that contain a Cas-binding RNA motif in the 5'-UTR. We designed 81 different types of translation OFF and ON switches and verified their functional characteristics. Many of them functioned as efficient translational regulators and showed orthogonality in mammalian cells. By interconnecting these switches, we designed and built artificial circuits, including 60 translational AND gates. Moreover, we show that various CRISPR-related technologies, including anti-CRISPR and split-Cas9 platforms, can be repurposed to control translation. Our Cas-mediated translational regulation is compatible with transcriptional regulation by Cas proteins and increases the complexity of synthetic circuits with fewer elements. CaRTRIDGE builds protein-responsive mRNA switches more than ever and leads to the development of both Cas-mediated genome editing and translational regulation technologies.


2021 ◽  
Author(s):  
Moataz Dowaidar

CRISPR/Cas9 is a genome editing technology that uses an RNA-guided programmable nuclease, Cas9, for genomic engineering. Recently, viral delivery-based genome editing for the treatment of congenital blindness has proceeded into clinical trials. Despite advancements, the potential for immunogenicity and restricted viral nanoparticles have hampered therapeutic genome editing. In this context, stimuli-responsive nanoparticles that degrade or disassociate from genome editing machinery have a lot of promise. Phenylboronic acid (PBA) conjugated PEI and 2,3dimethylmaleic anhydride (DMMA) modified poly (ethylene glycol) bpolylysine (mPEG113bPLys100/DMMA), for example, is a pH responsive nanoparticle. PEI is a cationic polymer that has been widely employed for pH-responsive CRISPR/Cas9 delivery due to its high density of ionizable amines, which promotes the proton sponge effect for endosome escape. Injecting a plasmid carrying dead Cas9 into mice can upregulate the expression of miR524 for cancer treatment. Cas9 RNPs may be encased inside nanoscale ZIF8 via in situ self-assembly of 2 methylimidazole (2MIMs), zinc ions, and Cas9 RNP. Under acidic conditions, Zif8/Cas9 nanoparticles released 70% of Cas9 in only 10 minutes. The antigenic profile and content of cancer cell membranes are inherited from the source cells, resulting in homotypic targeting. In living cells, varying redox potential offers particular cues for spatiotemporal CRISPR/Cas9 delivery.This review describes genome editing delivery vectors that are responsive to light, magnetic fields, and ultrasound. Nanocarriers can be used to control the activity of genome editing in a spatiotemporal way by using stimulusresponsive nanocarriers. NIR irradiation creates 1O2 and breaks down PEI brushes in pSPN, releasing the Cas9 plasmid and allowing gene editing to begin. To avoid unintentional off-target editing, CRISPR/Cas9 must be delivered to specified regions of tissues with spatial control. MNPBV, a nanocomplex made up of baculoviral vectors (BV) and magnetic nanoparticles (MNP), has the potential to provide multiplexed and regulated genome editing in vitro. Zhang and Wang et al. used an ultrasound-propelled gold nanowire as an active transport vehicle to deliver Cas9 RNP.


Neuron ◽  
2021 ◽  
Vol 109 (7) ◽  
pp. 1080-1083
Author(s):  
Daniel M. Ramos ◽  
William C. Skarnes ◽  
Andrew B. Singleton ◽  
Mark R. Cookson ◽  
Michael E. Ward

2021 ◽  
Vol 2 ◽  
Author(s):  
Stefanie Klaver-Flores ◽  
Hidde A. Zittersteijn ◽  
Kirsten Canté-Barrett ◽  
Arjan Lankester ◽  
Rob C. Hoeben ◽  
...  

Many gene editing techniques are developed and tested, yet, most of these are optimized for transformed cell lines, which differ from their primary cell counterparts in terms of transfectability, cell death propensity, differentiation capability, and chromatin accessibility to gene editing tools. Researchers are working to overcome the challenges associated with gene editing of primary cells, namely, at the level of improving the gene editing tool components, e.g., the use of modified single guide RNAs, more efficient delivery of Cas9 and RNA in the ribonucleoprotein of these cells. Despite these efforts, the low efficiency of proper gene editing in true primary cells is an obstacle that needs to be overcome in order to generate sufficiently high numbers of corrected cells for therapeutic use. In addition, many of the therapeutic candidate genes for gene editing are expressed in more mature blood cell lineages but not in the hematopoietic stem cells (HSCs), where they are tightly packed in heterochromatin, making them less accessible to gene editing enzymes. Bringing HSCs in proliferation is sometimes seen as a solution to overcome lack of chromatin access, but the induction of proliferation in HSCs often is associated with loss of stemness. The documented occurrences of off-target effects and, importantly, on-target side effects also raise important safety issues. In conclusion, many obstacles still remain to be overcome before gene editing in HSCs for gene correction purposes can be applied clinically. In this review, in a perspective way, we will discuss the challenges of researching and developing a novel genetic engineering therapy for monogenic blood and immune system disorders.


Author(s):  
MA Bashir ◽  
Q Ali ◽  
MS Rashid ◽  
A Malika

The Cas9 protein derived from type II CRISPR as a part of bacterial immune system has been raising up as a useful genetic tool for genomic engineering in various life forms. As RNA-guided DNA endonucleases, the Cas9 could be effectively customized to marked new DNA sequence sites by adjusting guided RNA sequences; it has been appeared as new emerging DNA editing technology. The nuclease-disable types of Cas9 has provided adaptable RNA guided DNA focusing on regulation and visualization of genomic DNA, just as for restoring the epigenetic forms and status, all has been shown in a an accurate sequence. Through these proceed; the researchers have started to explore conceivable uses of Cas9 in medical, agriculture, pharmaceutical and livestock sciences.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hadas Zur ◽  
Rachel Cohen-Kupiec ◽  
Sophie Vinokour ◽  
Tamir Tuller

AbstractmRNA translation is a fundamental cellular process consuming most of the intracellular energy; thus, it is under extensive evolutionary selection for optimization, and its efficiency can affect the host's growth rate. We describe a generic approach for improving the growth rate (fitness) of any organism by introducing synonymous mutations based on comprehensive computational models. The algorithms introduce silent mutations that may improve the allocation of ribosomes in the cells via the decreasing of their traffic jams during translation respectively. As a result, resources availability in the cell changes leading to improved growth-rate. We demonstrate experimentally the implementation of the method on Saccharomyces cerevisiae: we show that by introducing a few mutations in two computationally selected genes the mutant's titer increased. Our approach can be employed for improving the growth rate of any organism providing the existence of data for inferring models, and with the relevant genomic engineering tools; thus, it is expected to be extremely useful in biotechnology, medicine, and agriculture.


Sign in / Sign up

Export Citation Format

Share Document