Constructing Logical Models of Gene Regulatory Networks by Integrating Transcription Factor–DNA Interactions with Expression Data: An Entropy-Based Approach

2012 ◽  
Vol 19 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Guy Karlebach ◽  
Ron Shamir

2018 ◽  
Author(s):  
Viren Amin ◽  
Murat Can Cobanoglu

AbstractWe present EPEE (Effector and Perturbation Estimation Engine), a method for differential analysis of transcription factor (TF) activity from gene expression data. EPEE addresses two principal challenges in the field, namely incorporating context-specific TF-gene regulatory networks, and accounting for the fact that TF activity inference is intrinsically coupled for all TFs that share targets. Our validations in well-studied immune and cancer contexts show that addressing the overlap challenge and using state-of-the-art regulatory networks enable EPEE to consistently produce accurate results. (Accessible at: https://github.com/Cobanoglu-Lab/EPEE)





2014 ◽  
Vol 31 (10) ◽  
pp. 2672-2688 ◽  
Author(s):  
Alys M. Cheatle Jarvela ◽  
Lisa Brubaker ◽  
Anastasia Vedenko ◽  
Anisha Gupta ◽  
Bruce A. Armitage ◽  
...  


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Neel Patel ◽  
William S. Bush

Abstract Background Transcriptional regulation is complex, requiring multiple cis (local) and trans acting mechanisms working in concert to drive gene expression, with disruption of these processes linked to multiple diseases. Previous computational attempts to understand the influence of regulatory mechanisms on gene expression have used prediction models containing input features derived from cis regulatory factors. However, local chromatin looping and trans-acting mechanisms are known to also influence transcriptional regulation, and their inclusion may improve model accuracy and interpretation. In this study, we create a general model of transcription factor influence on gene expression by incorporating both cis and trans gene regulatory features. Results We describe a computational framework to model gene expression for GM12878 and K562 cell lines. This framework weights the impact of transcription factor-based regulatory data using multi-omics gene regulatory networks to account for both cis and trans acting mechanisms, and measures of the local chromatin context. These prediction models perform significantly better compared to models containing cis-regulatory features alone. Models that additionally integrate long distance chromatin interactions (or chromatin looping) between distal transcription factor binding regions and gene promoters also show improved accuracy. As a demonstration of their utility, effect estimates from these models were used to weight cis-regulatory rare variants for sequence kernel association test analyses of gene expression. Conclusions Our models generate refined effect estimates for the influence of individual transcription factors on gene expression, allowing characterization of their roles across the genome. This work also provides a framework for integrating multiple data types into a single model of transcriptional regulation.



RSC Advances ◽  
2017 ◽  
Vol 7 (37) ◽  
pp. 23222-23233 ◽  
Author(s):  
Wei Liu ◽  
Wen Zhu ◽  
Bo Liao ◽  
Haowen Chen ◽  
Siqi Ren ◽  
...  

Inferring gene regulatory networks from expression data is a central problem in systems biology.



Biotechnology ◽  
2019 ◽  
pp. 265-304
Author(s):  
David Correa Martins Jr. ◽  
Fabricio Martins Lopes ◽  
Shubhra Sankar Ray

The inference of Gene Regulatory Networks (GRNs) is a very challenging problem which has attracted increasing attention since the development of high-throughput sequencing and gene expression measurement technologies. Many models and algorithms have been developed to identify GRNs using mainly gene expression profile as data source. As the gene expression data usually has limited number of samples and inherent noise, the integration of gene expression with several other sources of information can be vital for accurately inferring GRNs. For instance, some prior information about the overall topological structure of the GRN can guide inference techniques toward better results. In addition to gene expression data, recently biological information from heterogeneous data sources have been integrated by GRN inference methods as well. The objective of this chapter is to present an overview of GRN inference models and techniques with focus on incorporation of prior information such as, global and local topological features and integration of several heterogeneous data sources.



Sign in / Sign up

Export Citation Format

Share Document