binding preference
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 57)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Eline J. H. van Houtum ◽  
Christian Büll ◽  
Lenneke A. M. Cornelissen ◽  
Gosse J. Adema

Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors that recognize sialoglycans – sialic acid containing glycans that are abundantly present on cell membranes. Siglecs are expressed on most immune cells and can modulate their activity and function. The majority of Siglecs contains immune inhibitory motifs comparable to the immune checkpoint receptor PD-1. In the tumor microenvironment (TME), signaling through the Siglec-sialoglycan axis appears to be enhanced through multiple mechanisms favoring tumor immune evasion similar to the PD-1/PD-L1 signaling pathway. Siglec expression on tumor-infiltrating immune cells appears increased in the immune suppressive microenvironment. At the same time, enhanced Siglec ligand expression has been reported for several tumor types as a result of aberrant glycosylation, glycan modifications, and the increased expression of sialoglycans on proteins and lipids. Siglec signaling has been identified as important regulator of anti-tumor immunity in the TME, but the key factors contributing to Siglec activation by tumor-associated sialoglycans are diverse and poorly defined. Among others, Siglec activation and signaling are co-determined by their expression levels, cell surface distribution, and their binding preferences for cis- and trans-ligands in the TME. Siglec binding preference are co-determined by the nature of the proteins/lipids to which the sialoglycans are attached and the multivalency of the interaction. Here, we review the current understanding and emerging conditions and factors involved in Siglec signaling in the TME and identify current knowledge gaps that exist in the field.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 349
Author(s):  
Patrycja Filipczuk ◽  
Angelika Świtalska ◽  
Joanna Kosman ◽  
Grzegorz Nowaczyk ◽  
Anna Dembska

In this study, we examined properties of silver nanoclusters, which are AgNCs stabilized by DNA oligonucleotide scaffold containing G-quadruplex-forming sequences: human telomeric (Tel22) or thrombin-binding aptamer (TBA). Thus, we obtained two fluorescent probes abbreviated as Tel22C12-AgNCs and TBAC12-AgNCs, which were characterized using absorption, circular dichroism and fluorescence spectroscopy. Both probes emit green and red fluorescence. The presence of silver nanoclusters did not destabilize the formed G-quadruplexes. The structural changes of probes upon binding K+ or Na+ ions cause quenching in their red emission. Green emission was slightly quenched only in the case of Tel22C12-AgNCs; on the contrary, for TBAC12-AgNC’s green emission, we observed an increasing fluorescence signal. Moreover, the Tel22C12-AgNCs system shows not only a higher binding preference for K+ over Na+, but it was able to monitor small changes in K+ concentrations in the buffer mimicking extracellular conditions (high content of Na+ ions). These results suggest that Tel22C12-AgNCs exhibit the potential to monitor transmembrane potassium transport.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1724
Author(s):  
Li Huang ◽  
Zhenfeng Zhang ◽  
Roger McMacken

E. coli histone-like protein HU has been shown to interact with different topological forms of DNA. Using radiolabeled HU, we examine the effects of DNA supercoiling on HU–DNA interactions. We show that HU binds preferentially to negatively supercoiled DNA and that the affinity of HU for DNA increases with increases in the negative superhelical density of DNA. Binding of HU to DNA is most sensitively influenced by DNA supercoiling within a narrow but physiologically relevant range of superhelicity (σ = −0.06–0). Under stoichiometric binding conditions, the affinity of HU for negatively supercoiled DNA (σ = −0.06) is more than 10 times higher than that for relaxed DNA at physiologically relevant HU/DNA mass ratios (e.g., 1:10). This binding preference, however, becomes negligible at HU/DNA mass ratios higher than 1:2. At saturation, HU binds both negatively supercoiled and relaxed DNA with similar stoichiometries, i.e., 5–6 base pairs per HU dimer. In our chemical crosslinking studies, we demonstrate that HU molecules bound to negatively supercoiled DNA are more readily crosslinked than those bound to linear DNA. At in vivo HU/DNA ratios, HU appears to exist predominantly in a tetrameric form on negatively supercoiled DNA and in a dimeric form on linear DNA. Using a DNA ligase-mediated nick closure assay, we show that approximately 20 HU dimers are required to constrain one negative supercoil on relaxed DNA. Although fewer HU dimers may be needed to constrain one negative supercoil on negatively supercoiled DNA, our results and estimates of the cellular level of HU argue against a major role for HU in constraining supercoils in vivo. We discuss our data within the context of the dynamic distribution of the HU protein in cells, where temporal and local changes of DNA supercoiling are known to take place.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shitao Zhao ◽  
Michiaki Hamada

Abstract Background Protein-RNA interactions play key roles in many processes regulating gene expression. To understand the underlying binding preference, ultraviolet cross-linking and immunoprecipitation (CLIP)-based methods have been used to identify the binding sites for hundreds of RNA-binding proteins (RBPs) in vivo. Using these large-scale experimental data to infer RNA binding preference and predict missing binding sites has become a great challenge. Some existing deep-learning models have demonstrated high prediction accuracy for individual RBPs. However, it remains difficult to avoid significant bias due to the experimental protocol. The DeepRiPe method was recently developed to solve this problem via introducing multi-task or multi-label learning into this field. However, this method has not reached an ideal level of prediction power due to the weak neural network architecture. Results Compared to the DeepRiPe approach, our Multi-resBind method demonstrated substantial improvements using the same large-scale PAR-CLIP dataset with respect to an increase in the area under the receiver operating characteristic curve and average precision. We conducted extensive experiments to evaluate the impact of various types of input data on the final prediction accuracy. The same approach was used to evaluate the effect of loss functions. Finally, a modified integrated gradient was employed to generate attribution maps. The patterns disentangled from relative contributions according to context offer biological insights into the underlying mechanism of protein-RNA interactions. Conclusions Here, we propose Multi-resBind as a new multi-label deep-learning approach to infer protein-RNA binding preferences and predict novel interactions. The results clearly demonstrate that Multi-resBind is a promising tool to predict unknown binding sites in vivo and gain biology insights into why the neural network makes a given prediction.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ko-Han Lee ◽  
Yu-Chuan Chang ◽  
Ting-Fu Chen ◽  
Hsueh-Fen Juan ◽  
Huai-Kuang Tsai ◽  
...  

AbstractThe selection of peptides presented by MHC molecules is crucial for antigen discovery. Previously, several predictors have shown impressive performance on binding affinity. However, the decisive MHC residues and their relation to the selection of binding peptides are still unrevealed. Here, we connected HLA alleles with binding motifs via our deep learning-based framework, MHCfovea. MHCfovea expanded the knowledge of MHC-I-binding motifs from 150 to 13,008 alleles. After clustering N-terminal and C-terminal sub-motifs on both observed and unobserved alleles, MHCfovea calculated the hyper-motifs and the corresponding allele signatures on the important positions to disclose the relation between binding motifs and MHC-I sequences. MHCfovea delivered 32 pairs of hyper-motifs and allele signatures (HLA-A: 13, HLA-B: 12, and HLA-C: 7). The paired hyper-motifs and allele signatures disclosed the critical polymorphic residues that determine the binding preference, which are believed to be valuable for antigen discovery and vaccine design when allele specificity is concerned.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6194
Author(s):  
Libo Zhang ◽  
Hai Yu ◽  
Yuanyuan Bai ◽  
Bijoyananda Mishra ◽  
Xiaoxiao Yang ◽  
...  

Carbohydrate-protein conjugates have diverse applications. They have been used clinically as vaccines against bacterial infection and have been developed for high-throughput assays to elucidate the ligand specificities of glycan-binding proteins (GBPs) and antibodies. Here, we report an effective process that combines highly efficient chemoenzymatic synthesis of carbohydrates, production of carbohydrate-bovine serum albumin (glycan-BSA) conjugates using a squarate linker, and convenient immobilization of the resulting neoglycoproteins on carboxylate-coated fluorescent magnetic beads for the development of a suspension multiplex array platform. A glycan-BSA-bead array containing BSA and 50 glycan-BSA conjugates with tuned glycan valency was generated. The binding profiles of six plant lectins with binding preference towards Gal and/or GalNAc, as well as human galectin-3 and galectin-8, were readily obtained. Our results provide useful information to understand the multivalent glycan-binding properties of human galectins. The neoglycoprotein-immobilized fluorescent magnetic bead suspension multiplex array is a robust and flexible platform for rapid analysis of glycan and GBP interactions and will find broad applications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lu Luo ◽  
Qian Wan ◽  
Kun Zhang ◽  
Xiurong Zhang ◽  
Ruijie Guo ◽  
...  

Soil salinity is one of the major factors that limit the area of cultivable land and yield potential of crops. The ability of salt tolerance varies with plant species. Peanut (Arachis hypogaea L.) is a moderately salt-sensitive and economically important crop, however, their biological processes involved in salt-stress response remain unclear. In this study, we investigated the role of A. hypogaea L. ABSCISIC ACID INSENSITIVE 4s (AhABI4s) in salt tolerance and elucidated its mode of action in peanuts. The results showed that the downregulation of AhABI4s via whole plant virus-induced gene silencing has enhanced the survival rate, biomass accumulation, and root/shoot ratio of peanut seedlings in response to salt-stress. Transcriptomics, quantitative proteomics, and phosphoproteomic analyses were performed using AhABI4s-silenced and Mock plants. The expression pattern of 15,247 genes, 1,900 proteins, and 2,620 phosphorylation sites were affected by silencing of AhABI4s in peanut leaf and root after sodium chloride (NaCl) treatment. Among them, 63 potential downstream target genes of ABI4 changed consistently at both transcription and translation levels, and the protein/phosphorylation levels of 31 ion transporters/channels were also affected. Electrophoretic mobility shift assays (EMSA) showed that ABI4 was able to bind to the promoters of HSP70, fructokinase (FRK), and pyruvate kinase (PK) coding genes in vitro. In addition, we also detected a binding preference of AhABI4 for CACT(G/T)GCA motif in the promoters of down-regulated genes in peanut leaf. Collectively, the potential downstream targets which were regulated at the levels of transcription and translation, binding preference, and in vivo phosphorylation sites that had been revealed in this study will provide new insight into the AhABI4s-mediated salt tolerance regulation mechanism in peanuts.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5776
Author(s):  
Qian Huang ◽  
Bo Duan ◽  
Zhi Qu ◽  
Shilong Fan ◽  
Bin Xia

The nucleoid-associated protein GapR found in Caulobacter crescentus is crucial for DNA replication, transcription, and cell division. Associated with overtwisted DNA in front of replication forks and the 3′ end of highly-expressed genes, GapR can stimulate gyrase and topo IV to relax (+) supercoils, thus facilitating the movement of the replication and transcription machines. GapR forms a dimer-of-dimers structure in solution that can exist in either an open or a closed conformation. It initially binds DNA through the open conformation and then undergoes structural rearrangement to form a closed tetramer, with DNA wrapped in the central channel. Here, we show that the DNA binding domain of GapR (residues 1–72, GapRΔC17) exists as a dimer in solution and adopts the same fold as the two dimer units in the full-length tetrameric protein. It binds DNA at the minor groove and reads the spatial distribution of DNA phosphate groups through a lysine/arginine network, with a preference towards AT-rich overtwisted DNA. These findings indicate that the dimer unit of GapR has an intrinsic DNA binding preference. Thus, at the initial binding step, the open tetramer of GapR with two relatively independent dimer units can be more efficiently recruited to overtwisted regions.


2021 ◽  
Vol 49 (18) ◽  
pp. 10735-10746
Author(s):  
Jean Chatain ◽  
Georges Hatem ◽  
Emmanuelle Delagoutte ◽  
Jean-François Riou ◽  
Patrizia Alberti ◽  
...  

Abstract Telomeres are DNA repeated sequences that associate with shelterin proteins and protect the ends of eukaryotic chromosomes. Human telomeres are composed of 5′TTAGGG repeats and ends with a 3′ single-stranded tail, called G-overhang, that can be specifically bound by the shelterin protein hPOT1 (human Protection of Telomeres 1). In vitro studies have shown that the telomeric G-strand can fold into stable contiguous G-quadruplexes (G4). In the present study we investigated how hPOT1, in complex with its shelterin partner TPP1, binds to telomeric sequences structured into contiguous G4 in potassium solutions. We observed that binding of multiple hPOT1–TPP1 preferentially proceeds from 3′ toward 5′. We explain this directionality in terms of two factors: (i) the preference of hPOT1–TPP1 for the binding site situated at the 3′ end of a telomeric sequence and (ii) the cooperative binding displayed by hPOT1–TPP1 in potassium. By comparing binding in K+ and in Li+, we demonstrate that this cooperative behaviour does not stem from protein-protein interactions, but from structuring of the telomeric DNA substrate into contiguous G4 in potassium. Our study suggests that POT1-TPP1, in physiological conditions, might preferentially cover the telomeric G-overhang starting from the 3′-end and proceeding toward 5′.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 915
Author(s):  
Serena H. Chen ◽  
David R. Bell

Epithelial cell-activating molecule (EpCAM) is an important cancer biomarker and therapeutic target given its elevated expression in epithelial cancers. EpCAM is a type I transmembrane protein that forms cis-dimers along the thyroglobulin type-1A-like domain (TYD) in the extracellular region. The thyroglobulin loop (TY loop) within the TYD is structurally dynamic in the monomer state of human EpCAM, binding reversibly to a TYD site. However, it is not known if this flexibility is prevalent across different species. Here, we conduct over 17 μs of all-atom molecular dynamics simulations to study EpCAM TY loop kinetics of five different species, including human, mouse, chicken, frog, and fish. We find that the TY loop remains dynamic across evolution. In addition to the TYD binding site, we discover a second binding site for the TY loop in the C-terminal domain (CTD). Calculations of the dissociation rate constants from the simulation trajectories suggest a differential binding pattern of fish EpCAM and other organisms. Whereas fish TY loop has comparable binding for both TYD and CTD sites, the TY loops of other species preferably bind the TYD site. A hybrid construct of fish EpCAM with human TY loop restores the TYD binding preference, suggesting robust effects of the TY loop sequence on its dynamic behavior. Our findings provide insights into the structural dynamics of EpCAM and its implication in physiological functions.


Sign in / Sign up

Export Citation Format

Share Document