chromatin looping
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 60)

H-INDEX

29
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Huating WANG ◽  
Yu Zhao ◽  
Yingzhe Ding ◽  
Liangqiang He ◽  
Yuying Li ◽  
...  

Abstract 3D genome rewiring is known to influence spatiotemporal expression of lineage-specific genes and cell fate transition during stem cell differentiation and aging processes. Yet it is unknown how 3D architecture remodels and orchestrates transcriptional changes during skeletal muscle stem cell (also called satellite cell, SC) activation, proliferation and differentiation course. Here, using in situ Hi-C we comprehensively map the 3D genome topology reorganization at multiscale levels during mouse SC lineage progression and integrate with transcriptional and chromatin signatures to elucidate how 3D genome rewiring dictates gene expression program. Specifically, rewiring at compartment level is most pronounced when SC becomes activated. Striking loss in TAD border insulation and chromatin looping also occurs during early activation process. Meanwhile, TADs can also form TAD clusters and super-enhancer containing TAD clusters orchestrate stage-specific gene expression during SC early activation. Furthermore, we elucidate 3D chromatin regulation of key transcription factor, PAX7 and identify cis-regulatory elements that are crucial for local chromatin architecture and Pax7 expression. Lastly, 3D genome remodeling is profiled in SCs isolated from naturally aging mice, unveiling that geriatric SCs display a prominent gain in long-range contacts and loss of TAD border insulation. Genome compartmentalization and chromatin looping are evidently altered in aged SC while geriatric SC display a more prominent loss in strength of TAD borders. Together, our results implicate 3D chromatin extensively reorganizes at multiple architectural levels and underpin the transcriptome remodeling during SC lineage development and SC aging.


2021 ◽  
Author(s):  
Yu Zhao ◽  
YINGZHE DING ◽  
Liangqiang HE ◽  
Yuying Li ◽  
Xiaona Chen ◽  
...  

3D genome rewiring is known to influence spatiotemporal expression of lineage-specific genes and cell fate transition during stem cell differentiation and aging processes. Yet it is unknown how 3D architecture remodels and orchestrates transcriptional changes during skeletal muscle stem cell (also called satellite cell, SC) activation, proliferation and differentiation course. Here, using in situ Hi-C we comprehensively map the 3D genome topology reorganization at multiscale levels during mouse SC lineage progression and integrate with transcriptional and chromatin signatures to elucidate how 3D genome rewiring dictates gene expression program. Specifically, rewiring at compartment level is most pronounced when SC becomes activated. Striking loss in TAD border insulation and chromatin looping also occurs during early activation process. Meanwhile, TADs can also form TAD clusters and super-enhancer containing TAD clusters orchestrate stage-specific gene expression during SC early activation. Furthermore, we elucidate 3D chromatin regulation of key transcription factor, PAX7 and identify cis-regulatory elements that are crucial for local chromatin architecture and Pax7 expression. Lastly, 3D genome remodeling is profiled in SCs isolated from naturally aging mice, unveiling that geriatric SCs display a prominent gain in long-range contacts and loss of TAD border insulation. Genome compartmentalization and chromatin looping are evidently altered in aged SC while geriatric SC display a more prominent loss in strength of TAD borders. Together, our results implicate 3D chromatin extensively reorganizes at multiple architectural levels and underpin the transcriptome remodeling during SC lineage development and SC aging.


2021 ◽  
Author(s):  
Michele Gabriele ◽  
Hugo B Brandão ◽  
Simon Grosse-Holz ◽  
Asmita Jha ◽  
Gina M Dailey ◽  
...  

Animal genomes are folded into loops and topologically associating domains (TADs) by CTCF and cohesin, but whether these loops are stable or dynamic is unknown. Here, we directly visualize chromatin looping at the Fbn2 TAD in mouse embryonic stem cells using super-resolution live-cell imaging and quantify looping dynamics by Bayesian inference. Our results are consistent with cohesin-mediated loop extrusion in cells, and with CTCF both stopping and stabilizing cohesin. Surprisingly, the Fbn2 loop is both rare and dynamic, with a looped fraction of ~3-6.5% and a median loop lifetime of ~10-30 minutes. Instead of a stable loop, our results establish a highly dynamic view of TADs and loops where the Fbn2 TAD exists predominantly in a partially extruded conformation. This dynamic and quantitative view of TADs may facilitate a mechanistic understanding of their functions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanli Liu ◽  
Zhong Wu ◽  
Jin Zhou ◽  
Dinesh K. A. Ramadurai ◽  
Katelyn L. Mortenson ◽  
...  

AbstractAmplification and overexpression of the SOX2 oncogene represent a hallmark of squamous cancers originating from diverse tissue types. Here, we find that squamous cancers selectively amplify a 3’ noncoding region together with SOX2, which harbors squamous cancer-specific chromatin accessible regions. We identify a single enhancer e1 that predominantly drives SOX2 expression. Repression of e1 in SOX2-high cells causes collapse of the surrounding enhancers, remarkable reduction in SOX2 expression, and a global transcriptional change reminiscent of SOX2 knockout. The e1 enhancer is driven by a combination of transcription factors including SOX2 itself and the AP-1 complex, which facilitates recruitment of the co-activator BRD4. CRISPR-mediated activation of e1 in SOX2-low cells is sufficient to rebuild the e1-SOX2 loop and activate SOX2 expression. Our study shows that squamous cancers selectively amplify a predominant enhancer to drive SOX2 overexpression, uncovering functional links among enhancer activation, chromatin looping, and lineage-specific copy number amplifications of oncogenes.


2021 ◽  
Author(s):  
Ted Hong ◽  
Sreeja Parameswaran ◽  
Omer A. Donmez ◽  
Daniel Miller ◽  
Carmy Forney ◽  
...  

The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein–Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we showed that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding in a B cell line that was (1) uninfected, (2) infected with a strain of EBV lacking EBNA2, or (3) infected with a strain that expresses EBNA2. We identified more than 400 EBNA2-dependent differentially expressed human genes and more than 5000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed more than 2000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP data revealed more than 1700 regions where EBNA2 altered chromatin looping interactions. Autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype–dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1. Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dahong Chen ◽  
Catherine E. McManus ◽  
Behram Radmanesh ◽  
Leah H. Matzat ◽  
Elissa P. Lei

AbstractDuring development, looping of an enhancer to a promoter is frequently observed in conjunction with temporal and tissue-specific transcriptional activation. The chromatin insulator-associated protein Alan Shepard (Shep) promotes Drosophila post-mitotic neuronal remodeling by repressing transcription of master developmental regulators, such as brain tumor (brat), specifically in maturing neurons. Since insulator proteins can promote looping, we hypothesized that Shep antagonizes brat promoter interaction with an as yet unidentified enhancer. Using chromatin conformation capture and reporter assays, we identified two enhancer regions that increase in looping frequency with the brat promoter specifically in pupal brains after Shep depletion. The brat promoters and enhancers function independently of Shep, ruling out direct repression of these elements. Moreover, ATAC-seq in isolated neurons demonstrates that Shep restricts chromatin accessibility of a key brat enhancer as well as other enhancers genome-wide in remodeling pupal but not larval neurons. These enhancers are enriched for chromatin targets of Shep and are located at Shep-inhibited genes, suggesting direct Shep inhibition of enhancer accessibility and gene expression during neuronal remodeling. Our results provide evidence for temporal regulation of chromatin looping and enhancer accessibility during neuronal maturation.


2021 ◽  
Author(s):  
Bhavana Kayyar ◽  
Anjhana C. Ravikkumar ◽  
Utsa Bhaduri ◽  
M.R.S Rao

AbstractSox8 is a developmentally important transcription factor that plays an important role in sex maintenance and fertility of adult mice. In the B-type spermatogonial cells, Sox8 is regulated by the lncRNA Mrhl in a p68-dependant manner under the control of the Wnt signalling pathway. The downregulation of Mrhl leads to the meiotic commitment of the spermatogonial cells in a Sox8-dependant manner. While the molecular players involved in the regulation of transcription at the Sox8 promoter have been worked out, our current study points to the involvement of the architectural proteins CTCF and cohesin in mediating a chromatin loop that brings the Sox8 promoter in contact with a silencer element present within the gene body in the presence of lncRNA Mrhl concomitant with transcriptional repression. Further, lncRNA Mrhl interacts with the Sox8 locus through the formation of a DNA:DNA:RNA triplex which is necessary for the recruitment of PRC2 to the locus. The downregulation of lncRNA Mrhl results in the promoter-silencer loop giving way to a promoter-enhancer loop. This active transcription associated chromatin loop is mediated by YY1 and brings the promoter in contact with the enhancer present downstream of the gene.


2021 ◽  
Author(s):  
Niels J. Rinzema ◽  
Konstantinos Sofiadis ◽  
Sjoerd J. D. Tjalsma ◽  
Marjon J.A.M. Verstegen ◽  
Yuva Oz ◽  
...  

ABSTRACTDevelopmental gene expression is often controlled by distal tissue-specific enhancers. Enhancer action is restricted to topological chromatin domains, typically formed by cohesin-mediated loop extrusion between CTCF-associated boundaries. To better understand how individual regulatory DNA elements form topological domains and control expression, we used a bottom-up approach, building active regulatory landscapes of different sizes in inactive chromatin. We demonstrate that transcriptional output and protection against gene silencing reduces with increased enhancer distance, but that enhancer contact frequencies alone do not dictate transcription activity. The enhancer recruits cohesin to stimulate the formation of local chromatin contact domains and activate flanking CTCF sites for engagement in chromatin looping. Small contact domains can support strong and stable expression of distant genes. The enhancer requires transcription factors and mediator to activate genes over all distance ranges, but relies on cohesin exclusively for the activation of distant genes. Our work supports a model that assigns two functions to enhancers: its classic role to stimulate transcription initiation and elongation from target gene promoters and a role to recruit cohesin for the creation of contact domains, the engagement of flanking CTCF sites in chromatin looping, and the activation of distal target genes.


Sign in / Sign up

Export Citation Format

Share Document