Genomic Organization of Human Centromeric Alpha Satellite DNA: Characterization of a Chromosome 17 Alpha Satellite Sequence

DNA ◽  
1987 ◽  
Vol 6 (4) ◽  
pp. 297-305 ◽  
Author(s):  
KONG H. CHOO ◽  
RUTH BROWN ◽  
GRAHAM WEBB ◽  
IAN W. CRAIG ◽  
R. GAY FILBY
1990 ◽  
Vol 10 (12) ◽  
pp. 6374-6380 ◽  
Author(s):  
R Wevrick ◽  
W C Earnshaw ◽  
P N Howard-Peebles ◽  
H F Willard

A familial, constitutionally rearranged human chromosome 17 is deleted for much of the DNA in its centromeric region but retains full mitotic centromere activity. Fluorescence in situ hybridization, pulsed-field gel electrophoresis, and Southern blot analysis of the residual centromeric region revealed a approximately 700-kb centromeric array of tandemly repeated alpha satellite DNA that was only approximately 20 to 30% as large as a normal array. This deletion was associated with a reduction in the amount of the centromere-specific antigen CENP-B detected by indirect immunofluorescence. The coincidence of the primary constriction, the small residual array of alpha satellite DNA, and the reduced amount of detectable CENP-B support the hypothesis that CENP-B is associated with alpha satellite DNA. Furthermore, the finding that both the deleted chromosome 17 and its derivative supernumerary fragment retained mitotic function and possess centromeric protein antigens suggests that human centromeres are structurally and functionally repetitive.


1992 ◽  
Vol 62 (2) ◽  
pp. 140-143 ◽  
Author(s):  
Hitoshi Nakagawa ◽  
Johji Inazawa ◽  
Shinichi Misawa ◽  
Shinji Tanaka ◽  
Teruyuki Takashima ◽  
...  

2020 ◽  
Vol 53 (02) ◽  
pp. 08-11
Author(s):  
Aytakin Hasanova

Heterochromatin of centromeric chromosome regions contains late replicating, largely repetitive DNA. It is suggested that heterochromatin participates in chromosome pairing, crossing-over and in chromosome disjunction control (1,3). Centromeric heterochromatin, a variety of heterochromatin, is a tightly packed form of DNA.Centromeric heterochromatin is a constituent in the formation ofactive centromeres in most higher-order organisms; the domain exists on both mitotic and interphase chromosomes. (4,5,6,8) Centromeric heterochromatin is usually formed on alpha satellite DNA in humans; however, there have been cases where centric heterochromatin and centromeres have formed on originally euchromatin domains lacking alpha satellite DNA; this usually happens as a result of a chromosome breakage event and the formed centromere is called a neocentromere.


2003 ◽  
Vol 23 (21) ◽  
pp. 7689-7697 ◽  
Author(s):  
M. Katharine Rudd ◽  
Robert W. Mays ◽  
Stuart Schwartz ◽  
Huntington F. Willard

ABSTRACT Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.


1990 ◽  
Vol 10 (12) ◽  
pp. 6374-6380
Author(s):  
R Wevrick ◽  
W C Earnshaw ◽  
P N Howard-Peebles ◽  
H F Willard

A familial, constitutionally rearranged human chromosome 17 is deleted for much of the DNA in its centromeric region but retains full mitotic centromere activity. Fluorescence in situ hybridization, pulsed-field gel electrophoresis, and Southern blot analysis of the residual centromeric region revealed a approximately 700-kb centromeric array of tandemly repeated alpha satellite DNA that was only approximately 20 to 30% as large as a normal array. This deletion was associated with a reduction in the amount of the centromere-specific antigen CENP-B detected by indirect immunofluorescence. The coincidence of the primary constriction, the small residual array of alpha satellite DNA, and the reduced amount of detectable CENP-B support the hypothesis that CENP-B is associated with alpha satellite DNA. Furthermore, the finding that both the deleted chromosome 17 and its derivative supernumerary fragment retained mitotic function and possess centromeric protein antigens suggests that human centromeres are structurally and functionally repetitive.


1991 ◽  
Vol 33 (1) ◽  
pp. 42-48 ◽  
Author(s):  
B. Marçais ◽  
J. P. Charlieu ◽  
B. Allain ◽  
E. Brun ◽  
M. Bellis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document