centromere function
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 24)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yuting Liu ◽  
Kehui Wang ◽  
Li Huang ◽  
Jicheng Zhao ◽  
Xinpeng Chen ◽  
...  

Centromere identity is defined by nucleosomes containing CENP-A, a histone H3 variant. The deposition of CENP-A at centromeres is tightly regulated in a cell-cycle-dependent manner. We previously reported that the spatiotemporal control of centromeric CENP-A incorporation is mediated by the phosphorylation of CENP-A Ser68. However, a recent report argued that Ser68 phosphoregulation is dispensable for accurate CENP-A loading. Here, we report that the substitution of Ser68 of endogenous CENP-A with either Gln68 or Glu68 severely impairs CENP-A deposition and cell viability. We also find that mice harboring the corresponding mutations are lethal. Together, these results indicate that the dynamic phosphorylation of Ser68 ensures cell-cycle-dependent CENP-A deposition and cell viability.


PLoS Biology ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. e3000968
Author(s):  
Reinier F. Prosée ◽  
Joanna M. Wenda ◽  
Isa Özdemir ◽  
Caroline Gabus ◽  
Kamila Delaney ◽  
...  

Centromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes, CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is reestablished on chromatin during diplotene of meiosis I. Here, we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but then its presence becomes dispensable for centromere maintenance during development. Worms homozygous for a CENP-A tail deletion maintain functional centromeres during development but give rise to inviable offspring because they fail to reestablish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2 and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.


Author(s):  
Arati Joshi ◽  
Meryl J Musicante ◽  
Bayly S Wheeler

Abstract Centromeres are essential for genetic inheritance—they prevent aneuploidy by providing a physical link between DNA and chromosome segregation machinery. In many organisms, centromeres form at sites of repetitive DNAs that help establish the chromatin architecture required for centromere function. These repeats are often rapidly evolving and subject to homogenization, which causes the expansion of novel repeats and sequence turnover. Thus, centromere sequence varies between individuals and across species. This variation can affect centromere function. We utilized Schizosaccharomyces pombe to assess the relationship between centromere sequence and structure and determine how sensitive this relationship is to genetic variation. In S. pombe, nucleating sequences within centromere repeats recruit heterochromatin via pathways that include the RNA-interference (RNAi) pathway. Heterochromatin, in turn, contributes to centromere function through its participation in three essential processes; establishment of a kinetochore, cohesion of sister chromatids, and suppression of recombination. Here, we show that a centromere element containing RevCen, a target of the RNAi pathway, establishes heterochromatin and gene silencing when relocated to a chromosome arm. Within this RevCen-containing element (RCE), a highly conserved domain is necessary for full heterochromatin nucleation but cannot establish heterochromatin independently. We characterize the ten unique RCEs in the S. pombe centromere assembly, which range from 60-100% identical, and show that all are sufficient to establish heterochromatin. These data affirm the importance of centromere repeats in establishing heterochromatin and suggest there is flexibility within the sequences that mediate this process. Such flexibility may preserve centromere function despite the rapid evolution of centromere repeats.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Takayoshi Ishii ◽  
Martina Juranić ◽  
Shamoni Maheshwari ◽  
Fernanda de Oliveira Bustamante ◽  
Maximilian Vogt ◽  
...  

AbstractIn most diploids the centromere-specific histone H3 (CENH3), the assembly site of active centromeres, is encoded by a single copy gene. Persistance of two CENH3 paralogs in diploids species raises the possibility of subfunctionalization. Here we analysed both CENH3 genes of the  diploid dryland crop cowpea. Phylogenetic analysis suggests that gene duplication of CENH3 occurred independently during the speciation of Vigna unguiculata. Both functional CENH3 variants are transcribed, and the corresponding proteins are intermingled in subdomains of different types of centromere sequences in a tissue-specific manner together with the kinetochore protein CENPC. CENH3.2 is removed from the generative cell of mature pollen, while CENH3.1 persists. CRISPR/Cas9-based inactivation of CENH3.1 resulted in delayed vegetative growth and sterility, indicating that this variant is needed for plant development and reproduction. By contrast, CENH3.2 knockout individuals did not show obvious defects during vegetative and reproductive development. Hence, CENH3.2 of cowpea is likely at an early stage of pseudogenization and less likely undergoing subfunctionalization.


2020 ◽  
Author(s):  
Reinier F. Prosée ◽  
Joanna M. Wenda ◽  
Caroline Gabus ◽  
Kamila Delaney ◽  
Francoise Schwager ◽  
...  

AbstractCentromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is established de novo on chromatin during diplotene of meiosis I. Here we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but dispensable for centromere maintenance during embryogenesis. Worms homozygous for a CENP-A tail deletion maintain a functional centromere during development, but give rise to inviable offspring because they fail to re-establish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2, and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.


Open Biology ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 200227
Author(s):  
Inês Milagre ◽  
Carolina Pereira ◽  
Raquel A. Oliveira ◽  
Lars E. T. Jansen

Pluripotent stem cells (PSCs) are central to development as they are the precursors of all cell types in the embryo. Therefore, maintaining a stable karyotype is essential, both for their physiological role as well as for their use in regenerative medicine. Karyotype abnormalities in PSCs in culture are common but the underlying causes remain unknown. To gain insight, we explore the composition of the centromere and kinetochore in human embryonic and induced PSCs. Centromere function depends on CENP-A nucleosome-defined chromatin. We show that while PSCs maintain abundant pools of CENP-A, CENP-C and CENP-T, these essential centromere components are strongly reduced at stem cell centromeres. Outer kinetochore recruitment is also impaired to a lesser extent, indicating an overall weaker kinetochore while the inner centromere protein Aurora B remains unaffected. We further show that, similar to differentiated human cells, CENP-A chromatin assembly in PSCs requires transition into G1 phase. Finally, reprogramming experiments indicate that reduction of centromeric CENP-A levels is an early event during dedifferentiation, coinciding with global chromatin remodelling. Our characterization of centromeres in human stem cells suggests a possible link between impaired centromere function and stem cell aneuploidies.


2020 ◽  
Vol 133 (14) ◽  
pp. jcs242610 ◽  
Author(s):  
Nuno M. C. Martins ◽  
Fernanda Cisneros-Soberanis ◽  
Elisa Pesenti ◽  
Natalia Y. Kochanova ◽  
Wei-Hao Shang ◽  
...  

ABSTRACTMost eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.


2020 ◽  
Vol 64 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Reinier F. Prosée ◽  
Joanna M. Wenda ◽  
Florian A. Steiner

Abstract The aim of mitosis is to segregate duplicated chromosomes equally into daughter cells during cell division. Meiosis serves a similar purpose, but additionally separates homologous chromosomes to produce haploid gametes for sexual reproduction. Both mitosis and meiosis rely on centromeres for the segregation of chromosomes. Centromeres are the specialized regions of the chromosomes that are attached to microtubules during their segregation. In this review, we describe the adaptations and layers of regulation that are required for centromere function during meiosis, and their role in meiosis-specific processes such as homolog-pairing and recombination. Since female meiotic divisions are asymmetric, meiotic centromeres are hypothesized to evolve quickly in order to favor their own transmission to the offspring, resulting in the rapid evolution of many centromeric proteins. We discuss this observation using the example of the histone variant CENP-A, which marks the centromere and is essential for centromere function. Changes in both the size and the sequence of the CENP-A N-terminal tail have led to additional functions of the protein, which are likely related to its roles during meiosis. We highlight the importance of CENP-A in the inheritance of centromere identity, which is dependent on the stabilization, recycling, or re-establishment of CENP-A-containing chromatin during meiosis.


2020 ◽  
Author(s):  
Jana Zwyrtková ◽  
Alžběta Němečková ◽  
Jana Čížková ◽  
Kateřina Holušová ◽  
Veronika Kapustová ◽  
...  

Abstract Background Cultivated grasses are an important source of food for domestic animals worldwide. Better knowledge of their genomes can speed up the development of new cultivars with better quality and resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass species ( Lolium spp.) and diploid and hexaploid fescue species ( Festuca spp.). In this work we characterized repetitive DNA sequences and their contribution to genome size in five fescue and two ryegrass species, as well as one fescue and two ryegrass cultivars. Results Partial genome sequences produced by Illumina technology were used for genome-wide comparative analyses using RepeatExplorer pipeline. Retrotransposons were found to be the most abundant repeat types in all seven grass species. Athila element of Ty3/gypsy family showed the most striking differences in copy number between fescues and ryegrasses. The sequence data enabled the assembly of an LTR element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of FISH with a probe specific to Fesreba element and immunostaining with CENH3 antibody showed their colocalization and indicated a possible role of Fesreba in centromere function. Conclusions Comparative repeatome analysis in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of LTR element Fesreba. A new LTR element Fesreba was identified and found abundant in centromeric regions of the fescues and ryegrasses. It may have a role in the function of their centromeres.


Sign in / Sign up

Export Citation Format

Share Document