Genetic modification of limbs using ex vivo machine perfusion

2021 ◽  
Author(s):  
Emilio Valdivia ◽  
Tamina Rother ◽  
Yuliia Yuzefovych ◽  
Franziska Hack ◽  
Nadine Wenzel ◽  
...  
2021 ◽  
Vol 8 (4) ◽  
pp. 39
Author(s):  
Luciana Da Silveira Cavalcante ◽  
Shannon N. Tessier

Heart transplantation became a reality at the end of the 1960s as a life-saving option for patients with end-stage heart failure. Static cold storage (SCS) at 4–6 °C has remained the standard for heart preservation for decades. However, SCS only allows for short-term storage that precludes optimal matching programs, requires emergency surgeries, and results in the unnecessary discard of organs. Among the alternatives seeking to extend ex vivo lifespan and mitigate the shortage of organs are sub-zero or machine perfusion modalities. Sub-zero approaches aim to prolong cold ischemia tolerance by deepening metabolic stasis, while machine perfusion aims to support metabolism through the continuous delivery of oxygen and nutrients. Each of these approaches hold promise; however, complex barriers must be overcome before their potential can be fully realized. We suggest that one barrier facing all experimental efforts to extend ex vivo lifespan are limited research tools. Mammalian models are usually the first choice due to translational aspects, yet experimentation can be restricted by expertise, time, and resources. Instead, there are instances when smaller vertebrate models, like the zebrafish, could fill critical experimental gaps in the field. Taken together, this review provides a summary of the current gold standard for heart preservation as well as new technologies in ex vivo lifespan extension. Furthermore, we describe how existing tools in zebrafish research, including isolated organ, cell specific and functional assays, as well as molecular tools, could complement and elevate heart preservation research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahar Cohen ◽  
Shirly Partouche ◽  
Michael Gurevich ◽  
Vladimir Tennak ◽  
Vadym Mezhybovsky ◽  
...  

AbstractWhole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic donors. However, the ability to recellularize organ scaffolds with multiple patient-specific cells in a spatially controlled manner remains challenging. Here, we propose that replacing donor endothelial cells alone, while keeping the rest of the organ viable and functional, is more technically feasible, and may offer a significant shortcut in the efforts to engineer transplantable organs. Vascular decellularization was achieved ex vivo, under controlled machine perfusion conditions, in various rat and porcine organs, including the kidneys, liver, lungs, heart, aorta, hind limbs, and pancreas. In addition, vascular decellularization of selected organs was performed in situ, within the donor body, achieving better control over the perfusion process. Human placenta-derived endothelial progenitor cells (EPCs) were used as immunologically-acceptable human cells to repopulate the luminal surface of de-endothelialized aorta (in vitro), kidneys, lungs and hind limbs (ex vivo). This study provides evidence that artificially generating vascular chimerism is feasible and could potentially pave the way for crossing the immunological barrier to xenotransplantation, as well as reducing the immunological burden of allogeneic grafts.


2021 ◽  
Author(s):  
Sergio Riveros ◽  
Carlo Marino ◽  
Gabriela Ochoa ◽  
Emilio Morales ◽  
Dagoberto Soto ◽  
...  

2018 ◽  
Vol 17 (2) ◽  
pp. e767 ◽  
Author(s):  
W. Markgraf ◽  
M.W.W. Janssen ◽  
J. Lilienthal ◽  
P. Feistel ◽  
C. Thiele ◽  
...  

2019 ◽  
Vol 103 (2) ◽  
pp. 314-322 ◽  
Author(s):  
Kamlesh Patel ◽  
Thomas B. Smith ◽  
Desley A.H. Neil ◽  
Alpesh Thakker ◽  
Yugo Tsuchiya ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3132 ◽  
Author(s):  
Julia Hofmann ◽  
Giorgi Otarashvili ◽  
Andras Meszaros ◽  
Susanne Ebner ◽  
Annemarie Weissenbacher ◽  
...  

Mitochondria sense changes resulting from the ischemia and subsequent reperfusion of an organ and mitochondrial reactive oxygen species (ROS) production initiates a series of events, which over time result in the development of full-fledged ischemia-reperfusion injury (IRI), severely affecting graft function and survival after transplantation. ROS activate the innate immune system, regulate cell death, impair mitochondrial and cellular performance and hence organ function. Arresting the development of IRI before the onset of ROS production is currently not feasible and clinicians are faced with limiting the consequences. Ex vivo machine perfusion has opened the possibility to ameliorate or antagonize the development of IRI and may be particularly beneficial for extended criteria donor organs. The molecular events occurring during machine perfusion remain incompletely understood. Accumulation of succinate and depletion of adenosine triphosphate (ATP) have been considered key mechanisms in the initiation; however, a plethora of molecular events contribute to the final tissue damage. Here we discuss how understanding mitochondrial dysfunction linked to IRI may help to develop novel strategies for the prevention of ROS-initiated damage in the evolving era of machine perfusion.


2019 ◽  
Vol 14 (1) ◽  
pp. 120-134 ◽  
Author(s):  
Thomas Prudhomme ◽  
Delphine Kervella ◽  
Stéphanie Le Bas-Bernardet ◽  
Diego Cantarovich ◽  
Georges Karam ◽  
...  

Introduction: Pancreas transplantation is currently one of the best treatments proposed in highly selected patients with unstable and brittle type 1 diabetes. The objective of pancreas transplantation is to restore normoglycemia and avoid the occurrence of complications associated with diabetes. Graft pancreatitis and thrombosis, arising from ischemia reperfusion injuries, are major causes of graft loss in the postoperative period. Ex situ perfusion, in hypothermic or normothermic settings, allowed to improve ischemic reperfusion injury in other organ transplantations (kidney, liver, or lung). The development of pancreatic graft perfusion techniques would limit these ischemic reperfusion injuries. Objective: Evaluation of the safety and feasibility of ex situ perfusion of pancreas for whole-organ transplantation. Methods: English literature about pancreas perfusion was analyzed using electronic database Medline via PubMed (1950-2018). Exclusion criteria were studies that did not specify the technical aspects of machine perfusion and studies focused only on pancreas perfusion for islet isolation. Results: Hypothermic machine perfusion for pancreas preservation has been evaluated in nine studies and normothermic machine perfusion in ten studies. We evaluated machine perfusion model, types of experimental model, anatomy, perfusion parameters, flushing and perfusion solution, length of perfusion, and comparison between static cold storage and perfusion. Conclusions: This review compared ex vivo machine perfusion of experimental pancreas for whole-organ transplantation. Pancreas perfusion is feasible and could be a helpful tool to evaluate pancreas prior to transplantation. Pancreas perfusion (in hypothermic or normothermic settings) could reduce ischemic reperfusion injuries, and maybe could avoid pancreas thrombosis and reduce morbidity of pancreas transplantation.


Sign in / Sign up

Export Citation Format

Share Document