scholarly journals First Report of siRNA Uptake During Ex Vivo Hypothermic and Normothermic Liver Machine Perfusion

Author(s):  
Andrew R. Gillooly ◽  
Jessica Perry ◽  
Paulo N. Martins
2020 ◽  
Vol 104 (1) ◽  
pp. e5-e7 ◽  
Author(s):  
Monique M.A. Verstegen ◽  
Laura Mezzanotte ◽  
R. Yanto Ridwan ◽  
Kairong Wang ◽  
Jubi de Haan ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Julianna E Buchwald ◽  
Jing Xu ◽  
Adel Bozorgzadeh ◽  
Paulo N Martins

2021 ◽  
Vol 8 ◽  
Author(s):  
Nikolaos Serifis ◽  
Rudy Matheson ◽  
Daniel Cloonan ◽  
Charles G. Rickert ◽  
James F. Markmann ◽  
...  

Although efforts have been made by transplant centers to increase the pool of available livers by extending the criteria of liver acceptance, this practice creates risks for recipients that include primary non-function of the graft, early allograft dysfunction and post-operative complications. Donor liver machine perfusion (MP) is a promising novel strategy that not only decreases cold ischemia time, but also serves as a method of assessing the viability of the graft. In this review, we summarize the data from liver machine perfusion clinical trials and discuss the various techniques available to date as well as future applications of machine perfusion. A variety of approaches have been reported including hypothermic machine perfusion (HMP) and normothermic machine perfusion (NMP); the advantages and disadvantages of each are just now beginning to be resolved. Important in this effort is developing markers of viability with lactate being the most predictive of graft functionality. The advent of machine perfusion has also permitted completely ischemia free transplantation by utilization of in situ NMP showed promising results. Animal studies that focus on defatting steatotic livers via NMP as well as groups that work on regenerating liver tissue ex vivo via MP. The broad incorporation of machine perfusion into routine clinical practice seems incredible.


2021 ◽  
Vol 10 (6) ◽  
pp. 1253
Author(s):  
Claire Goumard ◽  
Célia Turco ◽  
Mehdi Sakka ◽  
Lynda Aoudjehane ◽  
Philippe Lesnik ◽  
...  

The ongoing organ shortage has forced transplant teams to develop alternate sources of liver grafts. In this setting, ex-situ machine perfusion has rapidly developed as a promising tool to assess viability and improve the function of organs from extended criteria donors, including fatty liver grafts. In particular, normothermic machine perfusion represents a powerful tool to test a liver in full 37 °C metabolism and add pharmacological corrections whenever needed. In this context, many pharmacological agents and therapeutics have been tested to induce liver defatting on normothermic machine perfusion with promising results even on human organs. This systematic review makes a comprehensive synthesis on existing pharmacological therapies for liver defatting, with special focus on normothermic liver machine perfusion as an experimental ex-vivo translational model.


Author(s):  
Julian Michelotto ◽  
Joseph M. G. V. Gassner ◽  
Simon Moosburner ◽  
Vanessa Muth ◽  
Madhukar S. Patel ◽  
...  

Abstract Background Liver transplantation is the only curative treatment option for end-stage liver disease; however, its use remains limited due to a shortage of suitable organs. In recent years, ex vivo liver machine perfusion has been introduced to liver transplantation, as a means to expand the donor organ pool. Purpose To present a systematic review of prospective clinical studies on ex vivo liver machine perfusion, in order to assess current applications and highlight future directions. Methods A systematic literature search of both PubMed and ISI web of science databases as well as the ClinicalTrials.gov registry was performed. Results Twenty-one articles on prospective clinical trials on ex vivo liver machine perfusion were identified. Out of these, eight reported on hypothermic, eleven on normothermic, and two on sequential perfusion. These trials have demonstrated the safety and feasibility of ex vivo liver machine perfusion in both standard and expanded criteria donors. Currently, there are twelve studies enrolled in the clinicaltrials.gov registry, and these focus on use of ex vivo perfusion in extended criteria donors and declined organs. Conclusion Ex vivo liver machine perfusion seems to be a suitable strategy to expand the donor pool for liver transplantation and holds promise as a platform for reconditioning diseased organs.


2018 ◽  
Vol 102 (4) ◽  
pp. 601-608 ◽  
Author(s):  
Juan Echeverri ◽  
Nicolas Goldaracena ◽  
Johan Moritz Kaths ◽  
Ivan Linares ◽  
Roizar Roizales ◽  
...  

2021 ◽  
Vol 8 (4) ◽  
pp. 39
Author(s):  
Luciana Da Silveira Cavalcante ◽  
Shannon N. Tessier

Heart transplantation became a reality at the end of the 1960s as a life-saving option for patients with end-stage heart failure. Static cold storage (SCS) at 4–6 °C has remained the standard for heart preservation for decades. However, SCS only allows for short-term storage that precludes optimal matching programs, requires emergency surgeries, and results in the unnecessary discard of organs. Among the alternatives seeking to extend ex vivo lifespan and mitigate the shortage of organs are sub-zero or machine perfusion modalities. Sub-zero approaches aim to prolong cold ischemia tolerance by deepening metabolic stasis, while machine perfusion aims to support metabolism through the continuous delivery of oxygen and nutrients. Each of these approaches hold promise; however, complex barriers must be overcome before their potential can be fully realized. We suggest that one barrier facing all experimental efforts to extend ex vivo lifespan are limited research tools. Mammalian models are usually the first choice due to translational aspects, yet experimentation can be restricted by expertise, time, and resources. Instead, there are instances when smaller vertebrate models, like the zebrafish, could fill critical experimental gaps in the field. Taken together, this review provides a summary of the current gold standard for heart preservation as well as new technologies in ex vivo lifespan extension. Furthermore, we describe how existing tools in zebrafish research, including isolated organ, cell specific and functional assays, as well as molecular tools, could complement and elevate heart preservation research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahar Cohen ◽  
Shirly Partouche ◽  
Michael Gurevich ◽  
Vladimir Tennak ◽  
Vadym Mezhybovsky ◽  
...  

AbstractWhole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic donors. However, the ability to recellularize organ scaffolds with multiple patient-specific cells in a spatially controlled manner remains challenging. Here, we propose that replacing donor endothelial cells alone, while keeping the rest of the organ viable and functional, is more technically feasible, and may offer a significant shortcut in the efforts to engineer transplantable organs. Vascular decellularization was achieved ex vivo, under controlled machine perfusion conditions, in various rat and porcine organs, including the kidneys, liver, lungs, heart, aorta, hind limbs, and pancreas. In addition, vascular decellularization of selected organs was performed in situ, within the donor body, achieving better control over the perfusion process. Human placenta-derived endothelial progenitor cells (EPCs) were used as immunologically-acceptable human cells to repopulate the luminal surface of de-endothelialized aorta (in vitro), kidneys, lungs and hind limbs (ex vivo). This study provides evidence that artificially generating vascular chimerism is feasible and could potentially pave the way for crossing the immunological barrier to xenotransplantation, as well as reducing the immunological burden of allogeneic grafts.


Sign in / Sign up

Export Citation Format

Share Document