Regional Expression and Role of Cyclooxygenase-2 Following Experimental Traumatic Brain Injury

2000 ◽  
Vol 17 (1) ◽  
pp. 69-81 ◽  
Author(s):  
PRAMOD K. DASH ◽  
SARA A. MACH ◽  
ANTHONY N. MOORE
2022 ◽  
Author(s):  
Xiangrong Chen ◽  
Jieran Yao ◽  
Yue Chen ◽  
Wenqi Lv ◽  
Yuanxiang Lin ◽  
...  

Abstract Background The neuroinflammatory response mediated by microglial polarization plays an important role in the secondary nerve injury of traumatic brain injury (TBI). The post-transcriptional modification of n6-methyladenosine (m6A) is ubiquitous in the immune response of the central nervous system. The fat mass and obesity (FTO)-related protein can regulate the splicing process of pre-mRNA. However, after experimental traumatic brain injury (TBI), the role of FTO in microglial polarization and the subsequent neuroinflammatory response is still unclear. Methods TBI mice model was established by the Feeney weight-drop method. Neurological severity score, brain water content measurement and Nissl staining were used to detect the role of FTO in microglial polarization and the molecular mechanism of targeted RNA epigenetic modification. In vitro and in vivo experiments were conducted to evaluate microglial polarization and the neuroinflammatory response by down-regulation of FTO expression. The level of m6A modification in M1 activated microglia was detected by qRT-PCR, m6A-MeRIP and m6A high-throughput sequencing. Fluorescent in situ hybridization combined with immunofluorescence imaging were used to detect the epigenetic regulation of ADAM17 mediated by an FTO-m6A-dependent mechanism. Results The expression of FTO was significantly down-regulated in BV2 cells treated with lipopolysaccharide and mice with TBI. Down-regulation of FTO expression increased the level of m6A in M1 microglia at the level of the entire transcriptome. Meanwhile, after FTO interference, M1/M0 phenotype detection experiments revealed the BV2 cells shifted from an M0 to M1 phenotype as the population rate of CD11b+/CD86+ increased and secretion of pro-inflammatory cytokines was enhanced. Methylated RNA immunoprecipitation assay showed that the m6A peaks located in the ADAM17 and TNF-α genes increased. Taken together, the results indicated that FTO can affect the transcription modification of ADAM17 and the expression of the downstream TNF-α/NF-kB pathway. In turn, ADAM17 can block the M1-phenotypic transition of microglia driven by FTO-m6A modification. Conclusions The down-regulation of FTO expression leads to the abnormally high expression of ADAM17 in microglia. The activation of microglia and neuroinflammatory response regulated by FTO-related m6A modification play an important role in the early pro-inflammatory process of TBI secondary injury.


2012 ◽  
Vol 515 (2) ◽  
pp. 153-156 ◽  
Author(s):  
Narayana K. Yelleswarapu ◽  
Justin K. Tay ◽  
William M. Fryer ◽  
Mansi A. Shah ◽  
Alexandra N. Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document