Cell Proliferation and Neuronal Differentiation in the Dentate Gyrus in Juvenile and Adult Rats following Traumatic Brain Injury

2005 ◽  
Vol 22 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Dong Sun ◽  
Raymond J. Colello ◽  
Wilson P. Daugherty ◽  
Taek H. Kwon ◽  
Melissa J. McGinn ◽  
...  
2013 ◽  
pp. 27-38
Author(s):  
Sandra A. Acosta ◽  
Naoki Tajiri ◽  
Paula C. Bickford ◽  
Cesar V. Borlongan

2020 ◽  
Vol 15 ◽  
pp. 263310552096890
Author(s):  
Son T Ton ◽  
Natalie S Adamczyk ◽  
Jack P Gerling ◽  
Ian C Vaagenes ◽  
Joanna Y Wu ◽  
...  

Background: Traumatic brain injury is a significant public health issue that results in serious disability in survivors. Traumatic brain injury patients are often intoxicated with alcohol when admitted to the hospital; however, it is not clear how acute intoxication affects recovery from a traumatic brain injury. Our group has previously shown that binge alcohol prior to traumatic brain injury resulted in long-term impairment in a fine sensorimotor task that was correlated with a decreased proliferative and neuroblast response from the subventricular zone. However, whether binge alcohol prior to traumatic brain injury affects the proliferative response in the hippocampal dentate gyrus is not yet known. Methods: Male rats underwent binge alcohol (3 g/kg/day) by gastric gavage for 3 days prior to traumatic brain injury. Cell proliferation was labeled by BrdU injections following traumatic brain injury. Stereological quantification and immunofluorescence confocal analysis of BrdU+ cells in the hippocampal dorsal dentate gyrus was performed at 24 hours, 1 week and 6 weeks post traumatic brain injury. Results: We found that either traumatic brain injury alone or binge alcohol alone significantly increased dentate gyrus proliferation at 24 hours and 1 week. However, a combined binge alcohol and traumatic brain injury regimen resulted in decreased dentate gyrus proliferation at 24 hours post-traumatic brain injury. At the 6 week time point, binge alcohol overall reduced the number of BrdU+ cells. Furthermore, more BrdU+ cells were found in the dentate hilar region of alcohol traumatic brain injury compared to vehicle traumatic brain injury groups. The location and double-labeling of these mismigrated BrdU+ cells was consistent with hilar ectopic granule cells. Conclusion: The results from this study showed that pre-traumatic brain injury binge alcohol impacts the injury-induced proliferative response in the dentate gyrus in the short-term and may affect the distribution of newly generated cells in the dentate gyrus in the long-term.


2014 ◽  
Vol 13 (04) ◽  
pp. 579-593 ◽  
Author(s):  
Meng Wang ◽  
Hongjian Pu ◽  
Yingchao Liu ◽  
Zengtao Wang ◽  
Bomin Wang ◽  
...  

Neurosurgery ◽  
2014 ◽  
Vol 76 (2) ◽  
pp. 201-215 ◽  
Author(s):  
Muhammad Omar Chohan ◽  
Olga Bragina ◽  
Syed Faraz Kazim ◽  
Gloria Statom ◽  
Narjes Baazaoui ◽  
...  

ABSTRACT BACKGROUND: Traumatic brain injury (TBI) is a risk factor for Alzheimer disease (AD), a neurocognitive disorder with similar cellular abnormalities. We recently discovered a small molecule (Peptide 6) corresponding to an active region of human ciliary neurotrophic factor, with neurogenic and neurotrophic properties in mouse models of AD and Down syndrome. OBJECTIVE: To describe hippocampal abnormalities in a mouse model of mild to moderate TBI and their reversal by Peptide 6. METHODS: TBI was induced in adult C57Bl6 mice using controlled cortical impact with 1.5 mm of cortical penetration. The animals were treated with 50 nmol/d of Peptide 6 or saline solution for 30 days. Dentate gyrus neurogenesis, dendritic and synaptic density, and AD biomarkers were quantitatively analyzed, and behavioral tests were performed. RESULTS: Ipsilateral neuronal loss in CA1 and the parietal cortex and increase in Alzheimer-type hyperphosphorylated tau and A-β were seen in TBI mice. Compared with saline solution, Peptide 6 treatment increased the number of newborn neurons, but not uncommitted progenitor cells, in dentate gyrus by 80%. Peptide 6 treatment also reversed TBI-induced dendritic and synaptic density loss while increasing activity in tri-synaptic hippocampal circuitry, ultimately leading to improvement in memory recall on behavioral testing. CONCLUSION: Long-term treatment with Peptide 6 enhances the pool of newborn neurons in the dentate gyrus, prevents neuronal loss in CA1 and parietal cortex, preserves the dendritic and synaptic architecture in the hippocampus, and improves performance on a hippocampus-dependent memory task in TBI mice. These findings necessitate further inquiry into the therapeutic potential of small molecules based on neurotrophic factors.


Sign in / Sign up

Export Citation Format

Share Document