Concordance and Discrepancy between Electrodiagnosis and Magnetic Resonance Imaging in Cervical Root Avulsion Injuries

2006 ◽  
Vol 23 (8) ◽  
pp. 1274-1281 ◽  
Author(s):  
Po-Yi Tsai ◽  
Tien-Yow Chuang ◽  
Henrich Cheng ◽  
Hsiu-Mei Wu ◽  
Yue-Cune Chang ◽  
...  
2017 ◽  
Vol 43 (3) ◽  
pp. 250-258 ◽  
Author(s):  
Ryckie G. Wade ◽  
Vinay Itte ◽  
James J. Rankine ◽  
John P. Ridgway ◽  
Grainne Bourke

Identification of root avulsions is of critical importance in traumatic brachial plexus injuries because it alters the reconstruction and prognosis. Pre-operative magnetic resonance imaging is gaining popularity, but there is limited and conflicting data on its diagnostic accuracy for root avulsion. This cohort study describes consecutive patients requiring brachial plexus exploration following trauma between 2008 and 2016. The index test was magnetic resonance imaging at 1.5 Tesla and the reference test was operative exploration of the supraclavicular plexus. Complete data from 29 males was available. The diagnostic accuracy of magnetic resonance imaging for root avulsion(s) of C5-T1 was 79%. The diagnostic accuracy of a pseudomeningocoele as a surrogate marker of root avulsion(s) of C5-T1 was 68%. We conclude that pseudomeningocoles were not a reliable sign of root avulsion and magnetic resonance imaging has modest diagnostic accuracy for root avulsions in the context of adult traumatic brachial plexus injuries. Level of evidence: III


1999 ◽  
Vol 24 (5) ◽  
pp. 550-555 ◽  
Author(s):  
T. E. J. HEMS ◽  
R. BIRCH ◽  
T. CARLSTEDT

Magnetic resonance imaging (MRI) of the cervical spine and brachial plexus was performed on 26 consecutive patients presenting with traction injuries of the brachial plexus during 1996 and 1997. These included T1 and T2 weighted coronal, sagittal and axial images of the cervical spine and coronal images of the brachial plexus. The results were compared with surgical findings, intraoperative neurophysiology, and subsequent clinical progress. Operations for exploration and repair have been performed in 23 and 26 patients scanned. Evidence of root avulsion was seen in 11 patients in the form of displacement or oedema of the spinal cord, haemorrhage or scarring within the spinal canal, absence of roots in the intervertebral foramena, and meningoceles. Characteristic abnormalities were evident in the MR scans of all cases where exploration confirmed some root avulsions. There were no false positives. MRI underestimated the number of individual roots avulsed; sensitivity was 81%. Post-ganglionic lesions were seen as swelling on T1 images associated with increasing signal on T2 images. It was usually possible to define the level of the injury within the plexus. This study suggests that MR imaging, performed early after traction injury to the brachial plexus, provides useful additional information towards establishing the level of the lesion. It also provides information about injury to the plexus outside the spinal canal.


Author(s):  
Alan P. Koretsky ◽  
Afonso Costa e Silva ◽  
Yi-Jen Lin

Magnetic resonance imaging (MRI) has become established as an important imaging modality for the clinical management of disease. This is primarily due to the great tissue contrast inherent in magnetic resonance images of normal and diseased organs. Due to the wide availability of high field magnets and the ability to generate large and rapidly switched magnetic field gradients there is growing interest in applying high resolution MRI to obtain microscopic information. This symposium on MRI microscopy highlights new developments that are leading to increased resolution. The application of high resolution MRI to significant problems in developmental biology and cancer biology will illustrate the potential of these techniques.In combination with a growing interest in obtaining high resolution MRI there is also a growing interest in obtaining functional information from MRI. The great success of MRI in clinical applications is due to the inherent contrast obtained from different tissues leading to anatomical information.


1998 ◽  
Vol 41 (3) ◽  
pp. 538-548 ◽  
Author(s):  
Sean C. Huckins ◽  
Christopher W. Turner ◽  
Karen A. Doherty ◽  
Michael M. Fonte ◽  
Nikolaus M. Szeverenyi

Functional Magnetic Resonance Imaging (fMRI) holds exciting potential as a research and clinical tool for exploring the human auditory system. This noninvasive technique allows the measurement of discrete changes in cerebral cortical blood flow in response to sensory stimuli, allowing determination of precise neuroanatomical locations of the underlying brain parenchymal activity. Application of fMRI in auditory research, however, has been limited. One problem is that fMRI utilizing echo-planar imaging technology (EPI) generates intense noise that could potentially affect the results of auditory experiments. Also, issues relating to the reliability of fMRI for listeners with normal hearing need to be resolved before this technique can be used to study listeners with hearing loss. This preliminary study examines the feasibility of using fMRI in auditory research by performing a simple set of experiments to test the reliability of scanning parameters that use a high resolution and high signal-to-noise ratio unlike that presently reported in the literature. We used consonant-vowel (CV) speech stimuli to investigate whether or not we could observe reproducible and consistent changes in cortical blood flow in listeners during a single scanning session, across more than one scanning session, and in more than one listener. In addition, we wanted to determine if there were differences between CV speech and nonspeech complex stimuli across listeners. Our study shows reproducibility within and across listeners for CV speech stimuli. Results were reproducible for CV speech stimuli within fMRI scanning sessions for 5 out of 9 listeners and were reproducible for 6 out of 8 listeners across fMRI scanning sessions. Results of nonspeech complex stimuli across listeners showed activity in 4 out of 9 individuals tested.


Sign in / Sign up

Export Citation Format

Share Document