Downregulation of Extracellular Matrix-Related Gene Clusters during Osteogenic Differentiation of Human Bone Marrow- and Adipose Tissue-Derived Stromal Cells

2007 ◽  
Vol 13 (10) ◽  
pp. 2589-2600 ◽  
Author(s):  
Hiroshi Egusa ◽  
Keisuke Iida ◽  
Munemasa Kobayashi ◽  
Terry Y. Lin ◽  
Min Zhu ◽  
...  
2009 ◽  
Vol 37 (7) ◽  
pp. 867-875.e1 ◽  
Author(s):  
Fernando Ugarte ◽  
Martin Ryser ◽  
Sebastian Thieme ◽  
Fernando A. Fierro ◽  
Katrin Navratiel ◽  
...  

2007 ◽  
Vol 361-363 ◽  
pp. 1149-1152
Author(s):  
Jeong Joon Yoo ◽  
Jeon Hyun Bang ◽  
Kyung Hoi Koo ◽  
Kang Sup Yoon ◽  
Hee Joong Kim

The relationships between donor age and gender and initial isolation yield and the osteogenic potentials of human bone marrow stromal cells (hBMSCs) have not been clearly elucidated. The authors investigated whether isolation yields and the osteogenic differentiation potentials of hBMSCs are indeed dependent on donor age or gender. Fresh bone marrow was aspirated from iliac crest of 72 donors (mean age 54.1 years; range, 23-84 years; 39 men and 33 women) undergoing total hip arthroplasty. Numbers of mononuclear cells, numbers of colony forming unit-fibroblasts (CFU-Fs) and alkaline phosphatase (ALP)-positive CFU-Fs, and numbers of BMSCs after isolation culture were not found to be significantly dependent on donor age or gender. Moreover, no significant age- or gender-related differences were observed in terms of the proliferation activities, ALP activities, and calcium contents of BMSCs during in vitro osteogenic differentiation. The data obtained from 72 human donors revealed no significant age- or genderrelated differences among hBMSCs in terms of isolation yields, proliferation activities, and osteogenic potentials.


Cytotherapy ◽  
2013 ◽  
Vol 15 (4) ◽  
pp. 434-448 ◽  
Author(s):  
Zhilai Zhou ◽  
Yinhai Chen ◽  
Hui Zhang ◽  
Shaoxiong Min ◽  
Bo Yu ◽  
...  

Blood ◽  
1986 ◽  
Vol 67 (5) ◽  
pp. 1418-1426 ◽  
Author(s):  
S Tsai ◽  
CA Sieff ◽  
DG Nathan

Abstract A novel cover slip-transfer culture system was designed to study the functional roles of stromal cells in hemopoiesis, particularly erythropoiesis. Human bone marrow stromal cell colonies were allowed to develop on small glass cover slips in liquid medium. The cover slips, along with the stromal cell colonies and progenitors attached to them were then transferred to a new tissue culture dish and overlaid with methylcellulose culture medium. No exogenous colony-stimulating factors except erythropoietin were supplied. Large erythroid bursts, comprising multiple subcolonies, developed on the stromal cells. In order to determine if stromal fibroblasts together with erythropoietin and serum proteins could support erythroid development, human bone marrow cells depleted of monocytes, macrophages, and T lymphocytes were allowed to adhere to monolayers of a homogeneous fibroblastoid human stromal cell strain ST-1 grown on cover slips. The cover slips were then washed to remove nonadherent cells, transferred to a new culture dish, and overlaid with methylcellulose culture medium containing fetal calf serum and erythropoietin. In this modified system as well, primitive erythroid progenitors migrated extensively on and within the stroma to form huge colonies of hemoglobinized erythroblasts that proceeded to enucleate. Our results indicate that (1) ST-1 cells together with serum proteins and erythropoietin can support the development of large erythroid bursts; (2) erythroid progenitors and precursors adhere to and migrate on and within the extracellular matrix elaborated by ST-1 cells; (3) erythroid progenitors are more adherent to the ST-1 cells or the extracellular matrix than are the more mature cells and possibly the myeloid progenitors.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ute Hempel ◽  
Katrin Müller ◽  
Carolin Preissler ◽  
Carolin Noack ◽  
Sabine Boxberger ◽  
...  

Adult human bone marrow stromal cells (hBMSC) are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesisin vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the “aspect plastic adherence” without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a) how many passages the osteogenic characteristics are stable in and (b) the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP), octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated proteinγ). The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts.


2006 ◽  
Vol 309-311 ◽  
pp. 573-576
Author(s):  
Jeong Joon Yoo ◽  
Hee Joong Kim ◽  
Sang Hoon Rhee

Previous study showed that the novel poly(ε-caprolactone)–organosiloxane nano-hybrid material (SiOPCL) had bioactivity, biodegradability, and mechanical properties comparable to those of human cancellous bone. In this study, hydroxyl carbonate apatite layer (HCA) was preformed on the surface of SiOPCL, which mimicked the events likely to occur in vivo, and cellular behaviors of human bone marrow stromal cells (hBMSCs) were investigated during the osteogenic differentiation on its surface (SiOPCL/HCA). Initial attachment, proliferation, and ALP activities of hBMSCs were comparable to those on tissue culture plates (TCPs), while the calcium content in the cell layer showed significantly higher value. It means that this novel bioactive nano-hybrid material is likely to be a promising candidate for bone grafting materials because of good hBMSCs responses as well as apatite forming ability in the simulated body fluid.


Sign in / Sign up

Export Citation Format

Share Document