scholarly journals Contrasting Effects of Vasculogenic Induction Upon Biaxial Bioreactor Stimulation of Mesenchymal Stem Cells and Endothelial Progenitor Cells Cocultures in Three-Dimensional Scaffolds Under In Vitro and In Vivo Paradigms for Vascularized Bone Tissue Engineering

2013 ◽  
Vol 19 (7-8) ◽  
pp. 893-904 ◽  
Author(s):  
Yuchun Liu ◽  
Swee-Hin Teoh ◽  
Mark S.K. Chong ◽  
Chen-Hua Yeow ◽  
Roger D. Kamm ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ran Zhang ◽  
Xuewen Li ◽  
Yao Liu ◽  
Xiaobo Gao ◽  
Tong Zhu ◽  
...  

Biocompatible scaffolding materials play an important role in bone tissue engineering. This study sought to develop and characterize a nano-hydroxyapatite (nHA)/collagen I (ColI)/multi-walled carbon nanotube (MWCNT) composite scaffold loaded with recombinant bone morphogenetic protein-9 (BMP-9) for bone tissue engineering by in vitro and in vivo experiments. The composite nHA/ColI/MWCNT scaffolds were fabricated at various concentrations of MWCNTs (0.5, 1, and 1.5% wt) by blending and freeze drying. The porosity, swelling rate, water absorption rate, mechanical properties, and biocompatibility of scaffolds were measured. After loading with BMP-9, bone marrow mesenchymal stem cells (BMMSCs) were seeded to evaluate their characteristics in vitro and in a critical sized defect in Sprague-Dawley rats in vivo. It was shown that the 1% MWCNT group was the most suitable for bone tissue engineering. Our results demonstrated that scaffolds loaded with BMP-9 promoted differentiation of BMMSCs into osteoblasts in vitro and induced more bone formation in vivo. To conclude, nHA/ColI/MWCNT scaffolds loaded with BMP-9 possess high biocompatibility and osteogenesis and are a good candidate for use in bone tissue engineering.


2019 ◽  
Vol 10 ◽  
pp. 204173141983042 ◽  
Author(s):  
Dong Joon Lee ◽  
Jane Kwon ◽  
Luke Current ◽  
Kun Yoon ◽  
Rahim Zalal ◽  
...  

Although bone marrow–derived mesenchymal stem cells (MSCs) have been extensively explored in bone tissue engineering, only few studies using mesenchymal stem cells from mandible (M-MSCs) have been reported. However, mesenchymal stem cells from mandible have the potential to be as effective as femur-derived mesenchymal stem cells (F-MSCs) in regenerating bone, especially in the orofacial regions, which share embryonic origin, proximity, and accessibility. M-MSCs were isolated and characterized using mesenchymal stem cell–specific markers, colony forming assay, and multi-potential differentiation. In vitro osteogenic potential, including proliferation, osteogenic gene expression, alkaline phosphatase activity, and mineralization, was examined and compared. Furthermore, in vivo bone formations of F-MSCs and M-MSCs in rat critical sized defect were evaluated using microCT and histology. M-MSCs from rat could be successfully isolated and expanded while preserving their MSC’s characteristics. M-MSCs demonstrated a comparable proliferation and mineralization potentials and in vivo bone formation as F-MSCs. M-MSCs is a promising cell source candidate for craniofacial bone tissue engineering.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Bai ◽  
Lijun Li ◽  
Ni Kou ◽  
Yuwen Bai ◽  
Yaoyang Zhang ◽  
...  

Abstract Background Bone tissue engineering is a new concept bringing hope for the repair of large bone defects, which remains a major clinical challenge. The formation of vascularized bone is key for bone tissue engineering. Growth of specialized blood vessels termed type H is associated with bone formation. In vivo and in vitro studies have shown that low level laser therapy (LLLT) promotes angiogenesis, fracture healing, and osteogenic differentiation of stem cells by increasing reactive oxygen species (ROS). However, whether LLLT can couple angiogenesis and osteogenesis, and the underlying mechanisms during bone formation, remains largely unknown. Methods Mouse bone marrow mesenchymal stem cells (BMSCs) combined with biphasic calcium phosphate (BCP) grafts were implanted into C57BL/6 mice to evaluate the effects of LLLT on the specialized vessel subtypes and bone regeneration in vivo. Furthermore, human BMSCs and human umbilical vein endothelial cells (HUVECs) were co-cultured in vitro. The effects of LLLT on cell proliferation, angiogenesis, and osteogenesis were assessed. Results LLLT promoted the formation of blood vessels, collagen fibers, and bone tissue and also increased CD31hiEMCNhi-expressing type H vessels in mBMSC/BCP grafts implanted in mice. LLLT significantly increased both osteogenesis and angiogenesis, as well as related gene expression (HIF-1α, VEGF, TGF-β) of grafts in vivo and of co-cultured BMSCs/HUVECs in vitro. An increase or decrease of ROS induced by H2O2 or Vitamin C, respectively, resulted in an increase or decrease of HIF-1α, and a subsequent increase and decrease of VEGF and TGF-β in the co-culture system. The ROS accumulation induced by LLLT in the co-culture system was significantly decreased when HIF-1α was inhibited with DMBPA and was followed by decreased expression of VEGF and TGF-β. Conclusions LLLT enhanced vascularized bone regeneration by coupling angiogenesis and osteogenesis. ROS/HIF-1α was necessary for these effects of LLLT. LLLT triggered a ROS-dependent increase of HIF-1α, VEGF, and TGF-β and resulted in subsequent formation of type H vessels and osteogenic differentiation of mesenchymal stem cells. As ROS also was a target of HIF-1α, there may be a positive feedback loop between ROS and HIF-1α, which further amplified HIF-1α induction via the LLLT-mediated ROS increase. This study provided new insight into the effects of LLLT on vascularization and bone regeneration in bone tissue engineering.


2015 ◽  
Vol 78 (8) ◽  
pp. 688-696 ◽  
Author(s):  
Li Zhong ◽  
Juhua Gou ◽  
Nian Deng ◽  
Hao Shen ◽  
Tongchuan He ◽  
...  

2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Thakoon Thitiset ◽  
Siriporn Damrongsakkul ◽  
Supansa Yodmuang ◽  
Wilairat Leeanansaksiri ◽  
Jirun Apinun ◽  
...  

Abstract Background A novel biodegradable scaffold including gelatin (G), chitooligosaccharide (COS), and demineralized bone matrix (DBM) could play a significant part in bone tissue engineering. The present study aimed to investigate the biological characteristics of composite scaffolds in combination of G, COS, and DBM for in vitro cell culture and in vivo animal bioassays. Methods Three-dimensional scaffolds from the mixture of G, COS, and DBM were fabricated into 3 groups, namely, G, GC, and GCD using a lyophilization technique. The scaffolds were cultured with mesenchymal stem cells (MSCs) for 4 weeks to determine biological responses such as cell attachment and cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, cell morphology, and cell surface elemental composition. For the in vivo bioassay, G, GC, and GCD, acellular scaffolds were implanted subcutaneously in 8-week-old male Wistar rats for 4 weeks and 8 weeks. The explants were assessed for new bone formation using hematoxylin and eosin (H&E) staining and von Kossa staining. Results The MSCs could attach and proliferate on all three groups of scaffolds. Interestingly, the ALP activity of MSCs reached the greatest value on day 7 after cultured on the scaffolds, whereas the calcium assay displayed the highest level of calcium in MSCs on day 28. Furthermore, weight percentages of calcium and phosphorus on the surface of MSCs after cultivation on the GCD scaffolds increased when compared to those on other scaffolds. The scanning electron microscopy images showed that MSCs attached and proliferated on the scaffold surface thoroughly over the cultivation time. Mineral crystal aggregation was evident in GC and greatly in GCD scaffolds. H&E staining illustrated that G, GC, and GCD scaffolds displayed osteoid after 4 weeks of implantation and von Kossa staining confirmed the mineralization at 8 weeks in G, GC, and GCD scaffolds. Conclusion The MSCs cultured in GCD scaffolds revealed greater osteogenic differentiation than those cultured in G and GC scaffolds. Additionally, the G, GC, and GCD scaffolds could promote in vivo ectopic bone formation in rat model. The GCD scaffolds exhibited maximum osteoinductive capability compared with others and may be potentially used for bone regeneration.


2010 ◽  
Vol 93-94 ◽  
pp. 121-124
Author(s):  
Nuttapon Vachiraroj ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont

In this work, we developed a 3-dimensional bone tissue engineering scaffold from type B gelatin and hydroxyapatite. Two types of scaffolds, pure gelatin (pI~5) (Gel) and gelatin/hydroxyapatite (30/70 wt./wt.) (Gel/HA), were prepared from concentrated solutions (5% wt./wt.) using foaming/freeze drying method. The results SEM revealed the interconnected-homogeneous pores of Gel and Gel/HA were 121  119 and 148  83m, respectively. Hydroxyapatite improved mechanical property of the gelatin scaffolds, especially at dry state. Compressive modulus of Gel and Gel/HA scaffolds were at 118±21.68 and 510±109.08 kPa, respectively. The results on in vitro cells culture showed that Gel/HA scaffolds promoted attachment of rat’s mesenchymal stem cells (MSC) to a 1.23 folds higher than the Gel scaffolds. Population doubling time (PDT) of MSC on Gel and Gel/HA scaffolds were 51.16 and 54.89 hours, respectively. In term of osteogenic differentiation, Gel/HA scaffolds tended to enhance ALP activity and calcium content of MSC better than those of the Gel scaffold. Therefore the Gel/HA scaffolds had a potential to be applied in bone tissue engineering.


2016 ◽  
Vol 13 (5) ◽  
pp. 465-474 ◽  
Author(s):  
Hyeryeon Park ◽  
Dong-Jin Lim ◽  
Minhee Sung ◽  
Soo-Hong Lee ◽  
Dokyun Na ◽  
...  

2019 ◽  
Vol 20 (17) ◽  
pp. 4083
Author(s):  
Xing Yu Li ◽  
Shang Ying Wu ◽  
Po Sing Leung

Pancreatic progenitor cells (PPCs) are the primary source for all pancreatic cells, including beta-cells, and thus the proliferation and differentiation of PPCs into islet-like cell clusters (ICCs) opens an avenue to providing transplantable islets for diabetic patients. Meanwhile, mesenchymal stem cells (MSCs) can enhance the development and function of different cell types of interest, but their role on PPCs remains unknown. We aimed to explore the mechanism-of-action whereby MSCs induce the in vitro and in vivo PPC/ICC development by means of our established co-culture system of human PPCs with human fetal bone marrow-derived MSCs. We examined the effect of MSC-conditioned medium on PPC proliferation and survival. Meanwhile, we studied the effect of MSC co-culture enhanced PPC/ICC function in vitro and in vivo co-/transplantation. Furthermore, we identified IGF1 as a critical factor responsible for the MSC effects on PPC differentiation and proliferation via IGF1-PI3K/Akt and IGF1-MEK/ERK1/2, respectively. In conclusion, our data indicate that MSCs stimulated the differentiation and proliferation of human PPCs via IGF1 signaling, and more importantly, promoted the in vivo engraftment function of ICCs. Taken together, our protocol may provide a mechanism-driven basis for the proliferation and differentiation of PPCs into clinically transplantable islets.


Sign in / Sign up

Export Citation Format

Share Document