scholarly journals A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering

2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Thakoon Thitiset ◽  
Siriporn Damrongsakkul ◽  
Supansa Yodmuang ◽  
Wilairat Leeanansaksiri ◽  
Jirun Apinun ◽  
...  

Abstract Background A novel biodegradable scaffold including gelatin (G), chitooligosaccharide (COS), and demineralized bone matrix (DBM) could play a significant part in bone tissue engineering. The present study aimed to investigate the biological characteristics of composite scaffolds in combination of G, COS, and DBM for in vitro cell culture and in vivo animal bioassays. Methods Three-dimensional scaffolds from the mixture of G, COS, and DBM were fabricated into 3 groups, namely, G, GC, and GCD using a lyophilization technique. The scaffolds were cultured with mesenchymal stem cells (MSCs) for 4 weeks to determine biological responses such as cell attachment and cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, cell morphology, and cell surface elemental composition. For the in vivo bioassay, G, GC, and GCD, acellular scaffolds were implanted subcutaneously in 8-week-old male Wistar rats for 4 weeks and 8 weeks. The explants were assessed for new bone formation using hematoxylin and eosin (H&E) staining and von Kossa staining. Results The MSCs could attach and proliferate on all three groups of scaffolds. Interestingly, the ALP activity of MSCs reached the greatest value on day 7 after cultured on the scaffolds, whereas the calcium assay displayed the highest level of calcium in MSCs on day 28. Furthermore, weight percentages of calcium and phosphorus on the surface of MSCs after cultivation on the GCD scaffolds increased when compared to those on other scaffolds. The scanning electron microscopy images showed that MSCs attached and proliferated on the scaffold surface thoroughly over the cultivation time. Mineral crystal aggregation was evident in GC and greatly in GCD scaffolds. H&E staining illustrated that G, GC, and GCD scaffolds displayed osteoid after 4 weeks of implantation and von Kossa staining confirmed the mineralization at 8 weeks in G, GC, and GCD scaffolds. Conclusion The MSCs cultured in GCD scaffolds revealed greater osteogenic differentiation than those cultured in G and GC scaffolds. Additionally, the G, GC, and GCD scaffolds could promote in vivo ectopic bone formation in rat model. The GCD scaffolds exhibited maximum osteoinductive capability compared with others and may be potentially used for bone regeneration.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ran Zhang ◽  
Xuewen Li ◽  
Yao Liu ◽  
Xiaobo Gao ◽  
Tong Zhu ◽  
...  

Biocompatible scaffolding materials play an important role in bone tissue engineering. This study sought to develop and characterize a nano-hydroxyapatite (nHA)/collagen I (ColI)/multi-walled carbon nanotube (MWCNT) composite scaffold loaded with recombinant bone morphogenetic protein-9 (BMP-9) for bone tissue engineering by in vitro and in vivo experiments. The composite nHA/ColI/MWCNT scaffolds were fabricated at various concentrations of MWCNTs (0.5, 1, and 1.5% wt) by blending and freeze drying. The porosity, swelling rate, water absorption rate, mechanical properties, and biocompatibility of scaffolds were measured. After loading with BMP-9, bone marrow mesenchymal stem cells (BMMSCs) were seeded to evaluate their characteristics in vitro and in a critical sized defect in Sprague-Dawley rats in vivo. It was shown that the 1% MWCNT group was the most suitable for bone tissue engineering. Our results demonstrated that scaffolds loaded with BMP-9 promoted differentiation of BMMSCs into osteoblasts in vitro and induced more bone formation in vivo. To conclude, nHA/ColI/MWCNT scaffolds loaded with BMP-9 possess high biocompatibility and osteogenesis and are a good candidate for use in bone tissue engineering.


2019 ◽  
Vol 10 ◽  
pp. 204173141983042 ◽  
Author(s):  
Dong Joon Lee ◽  
Jane Kwon ◽  
Luke Current ◽  
Kun Yoon ◽  
Rahim Zalal ◽  
...  

Although bone marrow–derived mesenchymal stem cells (MSCs) have been extensively explored in bone tissue engineering, only few studies using mesenchymal stem cells from mandible (M-MSCs) have been reported. However, mesenchymal stem cells from mandible have the potential to be as effective as femur-derived mesenchymal stem cells (F-MSCs) in regenerating bone, especially in the orofacial regions, which share embryonic origin, proximity, and accessibility. M-MSCs were isolated and characterized using mesenchymal stem cell–specific markers, colony forming assay, and multi-potential differentiation. In vitro osteogenic potential, including proliferation, osteogenic gene expression, alkaline phosphatase activity, and mineralization, was examined and compared. Furthermore, in vivo bone formations of F-MSCs and M-MSCs in rat critical sized defect were evaluated using microCT and histology. M-MSCs from rat could be successfully isolated and expanded while preserving their MSC’s characteristics. M-MSCs demonstrated a comparable proliferation and mineralization potentials and in vivo bone formation as F-MSCs. M-MSCs is a promising cell source candidate for craniofacial bone tissue engineering.


2010 ◽  
Vol 4 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Sittisak Honsawek ◽  
Piyanuch Bumrungpanichthaworn ◽  
Voranuch Thanakit ◽  
Vachiraporn Kunrangseesomboon ◽  
Supamongkon Muchmee ◽  
...  

Abstract Background: Demineralized bone matrix (DBM) is extensively used in orthopedic, periodontal, and maxillofacial application and investigated as a material to induce new bone formation. Small intestinal submucosa (SIS) derived from the submucosa layer of porcine intestine has widely utilized as biomaterial with minimum immune response. Objectives: Determine the osteoinductive potential of SIS, DBM, SIS/DBM composites in the in vitro cell culture and in vivo animal bioassays for bone tissue engineering. Materials and methods: Human periosteal (HPO) cells were treated in the absence or presence SIS, DBM, and SIS/DBM. Cell proliferation was examined by direct cell counting. Osteoblast differentiation of the HPO cells was analyzed with alkaline phosphatase activity assay. The Wistar rat muscle implant model was used to evaluate the osteoinductive potential of SIS, DBM, and SIS/DBM composites. Results: HPO cells could differentiate along osteogenic lineage when treated with either DBM or SIS/DBM. SIS/ DBM had a tendency to promote more cellular proliferation and osteoblast differentiation than the other treatments. In Wistar rat bioassay, SIS showed no new bone formation and the implants were surrounded by fibrous tissues. DBM demonstrated new bone formation along the edge of old DBM particles. SIS/DBM composite exhibited high osteoinductivity, and the residual SIS/DBM was surrounded by osteoid-like matrix and newly formed bone. Conclusion: DBM and SIS/DBM composites could retain their osteoinductive capability. SIS/DBM scaffolds may provide an alternative approach for bone tissue engineering.


2015 ◽  
Vol 16 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Saeid Nosouhian ◽  
Amin Davoudi ◽  
Mansour Rismanchian ◽  
Sayed Mohammad Razavi ◽  
Hamidreza Sadeghiyan

ABSTRACT Introduction Three-dimensional Scaffold structure of synthetic biomaterials with their interconnected spaces seem to be a safe and effective option in supporting bone regeneration. The aim of this animal study was to compare the effectiveness of three different biocompatible scaffolds: bioglass (BG), demineralized bone matrix (DBM) and forstrite (FR). Materials and methods Four healthy dogs were anesthetized and the first to fourth premolars were extracted atraumatically in each quadrant. After healing, linear incision was prepared from molar to anterior segment and 4 defects in each quadrant (16 defects in each dog) were prepared. Scaffold blocks of BG, DBM and FR were resized according to size of defects and placed in the 12 defects randomly, 4 defects remained as control group. The dogs were sacrificed in 4 time intervals (15, 30, 45 and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed by one-way ANOVA and post hoc using SPSS software Ver. 15 at significant level of 0.05. Results In day 30th, although the amount of regenerated lamellar bone in control, DBM and BG Scaffold (22.37 ± 3.44; 21.46 ± 1.96; 21.21 ± 0.96) were near to each, the FR Scaffold provided the highest amount of lamellar (29.71 ± 7.94) and woven bone (18.28 ± 2.35). Also, FR Scaffold showed significant difference with BG (p = 0.026) and DBM Scaffolds (p = 0.032) in regenerated lamellar bone. Conclusion We recommend paying more attention to FR Scaffold as a biomaterial, but it is better to be compared with other nano biomaterials in future studies. How to cite this article Rismanchian M, Nosouhian S, Razavi SM, Davoudi A, Sadeghiyan H. Comparing Three Different Threedimensional Scaffolds for Bone Tissue Engineering: An in vivo Study. J Contemp Dent Pract 2015;16(1):25-30.


2011 ◽  
Vol 17 (5-6) ◽  
pp. 789-798 ◽  
Author(s):  
Peter Supronowicz ◽  
Elise Gill ◽  
Angelica Trujillo ◽  
Taili Thula ◽  
Rasa Zhukauskas ◽  
...  

2011 ◽  
Vol 26 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Taís Somacal Novaes Silva ◽  
Bruno Tochetto Primo ◽  
Aurelício Novaes Silva Júnior ◽  
Denise Cantarelli Machado ◽  
Christian Viezzer ◽  
...  

Purpose: To evaluate the ability of macroporous tricalcium phosphate cement (CPC) scaffolds to enable the adhesion, proliferation, and differentiation of mesenchymal stem cells derived from human bone marrow. Methods: Cells from the iliac crest of an adult human donor were processed and cultured on macroporous CPC discs. Paraffin spheres sized between 100 and 250µm were used as porogens. Cells were cultured for 5, 10, and 15 days. Next, we assessed cells' behavior and morphology on the biomaterial by scanning electron microscopy. The expression levels of the BGLA and SSP1 genes and the alkaline phosphatase (ALP) activity were quantified by the quantitative real-time polymerase chain reaction technique (QT-PCR) using the fluorophore SYBR GREEN®. Results: QT-PCR detected the expression of the BGLA and SSP1 genes and the ALP activity in the periods of 10 and 15 days of culture. Thus, we found out that there was cell proliferation and differentiation in osteogenic cells. Conclusion: Macroporous CPC, with pore sized between 100 and 250µm and developed using paraffin spheres, enables adhesion, proliferation, and differentiation of mesenchymal stem cells in osteogenic cells and can be used as a scaffold for bone tissue engineering.


2020 ◽  
Vol 52 (6) ◽  
pp. 590-602 ◽  
Author(s):  
Yuwan Li ◽  
Ziming Liu ◽  
Yaping Tang ◽  
Qinghong Fan ◽  
Wei Feng ◽  
...  

Abstract Silk fibroin (SF) is a fibrous protein with unique mechanical properties, adjustable biodegradation, and the potential to drive differentiation of mesenchymal stem cells (MSCs) along the osteogenic lineage, making SF a promising scaffold material for bone tissue engineering. In this study, hAMSCs were isolated by enzyme digestion and identified by multiple-lineage differentiation. SF scaffold was fabricated by freeze-drying, and the adhesion and proliferation abilities of hAMSCs on scaffolds were determined. Osteoblast differentiation and angiogenesis of hAMSCs on scaffolds were further evaluated, and histological staining of calvarial defects was performed to examine the cocultured scaffolds. We found that hAMSCs expressed the basic surface markers of MSCs. Collagen type I (COL-I) expression was observed on scaffolds cocultured with hAMSCs. The scaffolds potentiated the proliferation of hAMSCs and increased the expression of COL-I in hAMSCs. The scaffolds also enhanced the alkaline phosphatase activity and bone mineralization, and upregulated the expressions of osteogenic-related factors in vitro. The scaffolds also enhanced the angiogenic differentiation of hAMSCs. The cocultured scaffolds increased bone formation in treating critical calvarial defects in mice. This study first demonstrated that the application of 3D SF scaffolds co-cultured with hAMSCs greatly enhanced osteogenic differentiation and angiogenesis of hAMSCs in vitro and in vivo. Thus, 3D SF scaffolds cocultured with hAMSCs may be a better alternative for bone tissue engineering.


2005 ◽  
Vol 288-289 ◽  
pp. 63-66 ◽  
Author(s):  
Lei Cui ◽  
Dong Li ◽  
Xiang Dong Liu ◽  
Fanfan Chen ◽  
Wei Liu ◽  
...  

Objective The purpose of this study is to explore the growth, differentiation and osteogeneration of bone marrow stromal cells (BMSCs) on partially demineralized bone matrix (pDBM) and to generate bone tissue by tissue engineering approach in vivo. Methods Demineralized bone was processed from femur head of Shanghai white swine. Calcium content, porosity and pore size was measured respectively. In vitro osteogenic differentiated human BMSCs of passage 3 were seeded in pDBM. Adhesive rate of cells to pDBM was calculated 24hours after seeding. Distribution, growth and proliferation of BMSCs on pDBM were observed with fluorescent DiI labeling. Matrix disposition was analyzed with SEM observation. Cell-material complex was implanted subcutaneously in nude mice. The implants were harvested at 8, 12 weeks post surgery and samples were observed by H&E staining. Results BMSCs adhered well on the material and the distribution of cells was uniform. The adhesive rate is 99.1%±1%. New bone formation was observed in implant of 8, 12 weeks respectively. The newly formed bone was generated on the surface of the residual material and a layer of cells with typical characteristic of osteoblast was observed to adhere on the surface of the new bone. Conclusion With good biocompatibility to hBMSCs, pDBM could serve as ideal scaffold for bone tissue engineering both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document