Biomaterials Research
Latest Publications


TOTAL DOCUMENTS

237
(FIVE YEARS 93)

H-INDEX

25
(FIVE YEARS 9)

Published By Springer (Biomed Central Ltd.)

2055-7124, 2055-7124

2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Paula Zwicker ◽  
Thomas Schmidt ◽  
Melanie Hornschuh ◽  
Holger Lode ◽  
Axel Kramer ◽  
...  

Abstract Aim Periprosthetic joint infections are a devastating complication after arthroplasty, leading to rejection of the prosthesis. The prevention of septic loosening may be possible by an antimicrobial coating of the implant surface. Poly (hexamethylene) biguanide hydrochloride [PHMB] seems to be a suitable antiseptic agent for this purpose since previous studies revealed a low cytotoxicity and a long-lasting microbicidal effect of Ti6Al4V alloy coated with PHMB. To preclude an excessive activation of the immune system, possible inflammatory effects on macrophages upon contact with PHMB-coated surfaces alone and after killing of S. epidermidis and P. aeruginosa are analyzed. Methods THP-1 monocytes were differentiated to M0 macrophages by phorbol 12-myristate 13-acetate and seeded onto Ti6Al4V surfaces coated with various amounts of PHMB. Next to microscopic immunofluorescence analysis of labeled macrophages after adhesion on the coated surface, measurement of intracellular reactive oxygen species and analysis of cytokine secretion at different time points without and with previous bacterial contamination were conducted. Results No influence on morphology of macrophages and only slight increases in iROS generation were detected. The cytokine secretion pattern depends on the surface treatment procedure and the amount of adsorbed PHMB. The PHMB coating resulted in a high reduction of viable bacteria, resulting in no significant differences in cytokine secretion as reaction to coated surfaces with and without bacterial burden. Conclusion Ti6Al4V specimens after alkaline treatment followed by coating with 5–7 μg PHMB and specimens treated with H2O2 before PHMB-coating (4 μg) had the smallest influence on the macrophage phienotype and thus are considered as the surface with the best cytocompatibility to macrophages tested in the present study.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Na Kyeong Lee ◽  
Se-Na Kim ◽  
Chun Gwon Park

AbstractImmune cells are attractive targets for therapy as they are direct participants in a variety of diseases. Delivering a therapeutic agent only to cells that act on a disease by distinguishing them from other cells has the advantage of concentrating the therapeutic effect and lowering systemic side effects. Distinguishing each immune cell from other immune cells to deliver substances, including drugs and genes, can be achieved using nanotechnology. And also nanoparticles can ensure in vivo stability and sustained drug release. In addition, there is an ease of surface modification, which is an important characteristic that can be utilized in targeted drug delivery systems. This characteristic allows us to utilize various properties that are specifically expressed in each immune cell. A number of studies have delivered various substances specifically to immune cells through surface engineering with active target ligands that can target each immune cell and enzyme-responsive coating, and demonstrated high therapeutic effects compared to conventional treatments. Progress in research on target delivery has been suggested to be a breakthrough for the treatments of various diseases, including cancer treatment.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Minh Khai Le Thieu ◽  
Amin Homayouni ◽  
Lena Ringsby Hæren ◽  
Hanna Tiainen ◽  
Anders Verket ◽  
...  

Abstract Background Insufficient bone volume around an implant is a common obstacle when dental implant treatment is considered. Limited vertical or horizontal bone dimensions may lead to exposed implant threads following placement or a gap between the bone and implant. This is often addressed by bone augmentation procedures prior to or at the time of implant placement. This study evaluated bone healing when a synthetic TiO2 block scaffold was placed in circumferential peri-implant defects with buccal fenestrations. Methods The mandibular premolars were extracted and the alveolar bone left to heal for 4 weeks prior to implant placement in six minipigs. Two cylindrical defects were created in each hemi-mandible and were subsequent to implant placement allocated to treatment with either TiO2 scaffold or sham in a split mouth design. After 12 weeks of healing time, the samples were harvested. Microcomputed tomography (MicroCT) was used to investigate defect fill and integrity of the block scaffold. Distances from implant to bone in vertical and horizontal directions, percentage of bone to implant contact and defect fill were analysed by histology. Results MicroCT analysis demonstrated no differences between the groups for defect fill. Three of twelve scaffolds were partly fractured. At the buccal sites, histomorphometric analysis demonstrated higher bone fraction, higher percentage bone to implant contact and shorter distance from implant top to bone 0.5 mm lateral to implant surface in sham group as compared to the TiO2 group. Conclusions This study demonstrated less bone formation with the use of TiO2 scaffold block in combination with implant placement in cylindrical defects with buccal bone fenestrations, as compared to sham sites.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Do-Hun Kim ◽  
Jin-Myung Seo ◽  
Kyung-Ju Shin ◽  
Su-Geun Yang

Abstract Background Aptamer has been called “chemical antibody” which displays the specific affinity to target molecules compared to that of antibodies and possesses several therapeutic advantages over antibodies in terms of size, accessibility to synthesis, and modification. Based on the attractive properties, aptamers have been interested in many directions and now are emerged as new target-designed cancer drug. Main body Currently, new types of aptamers have been reported and attracted many scientists’ interesting. Due to simplicity of chemical modification and ready-made molecular engineering, scientists have developed newly designed aptamers conjugated with a wide range of therapeutics, aptamer-drug conjugates; ApDCs, from chemotherapy to phototherapy, gene therapy, and vaccines. ApDCs display synergistic therapeutic effects in cancer treatment. Conclusion In this paper, we reviewed various kinds of ApDCs, i.e., ApDC nucleotide analogs, ApDC by drug intercalation, and ApDC by using chemical linker. Current data prove these ApDCs have sufficient potential to complete clinical development soon. Advanced technology of cancer drug delivery and combination treatment of cancers enables aptamer and conjugated drug (ApDCs) efficient means for targeted cancer treatment that reduces potential toxicity and increases therapeutic efficacy.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Jei Kim ◽  
Hyun-Jung Kim ◽  
Seok Woo Chang ◽  
Soram Oh ◽  
Sun-Young Kim ◽  
...  

Abstract Background The addition of bioactive glass (BG), a highly bioactive material with remineralization potential, might improve the drawback of weakening property of mineral trioxide aggregates (MTA) when it encounters with body fluid. This study aims to evaluate the effect of BG addition on physical properties of MTA. Methods ProRoot (MTA), and MTA with various concentrations of BG (1, 2, 5 and 10% BG/MTA) were prepared. Simulated body fluid (SBF) was used to investigate the effect of the storage solution on dentin remineralization. Prepared specimens were examined as following; the push-out bond strength to dentin, compressive strength, setting time solubility and X-ray diffraction (XRD) analysis. Results The 2% BG/MTA showed higher push-out bond strengths than control group after 7 days of SBF storage. The 2% BG/MTA exhibited the highest compressive strength. Setting times were reduced in the 1 and 2% BG/MTA groups, and solubility of all experimental groups were clinically acceptable. In all groups, precipitates were observed in dentinal tubules via SEM. XRD showed the increased hydroxyapatite peaks in the 2, 5 and 10% BG/MTA groups. Conclusion It was verified that the BG-added MTA increased dentin push-out bond strength and compressive strength under SBF storage. The addition of BG did not negatively affect the MTA maturation reaction; it increased the amount of hydroxyapatite during SBF maturation.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Cheng Zhang ◽  
Romain Grossier ◽  
Nadine Candoni ◽  
Stéphane Veesler

AbstractThis review examines the preparation of alginate hydrogel microparticles by using droplet-based microfluidics, a technique widely employed for its ease of use and excellent control of physicochemical properties, with narrow size distribution. The gelation of alginate is realized “on-chip” and/or “off-chip”, depending on where cross-linkers are introduced. Various strategies are described and compared. Microparticle properties such as size, shape, concentration, stability and mechanical properties are discussed. Finally, we consider future perspectives for the preparation of hydrogel microparticles and their potential applications.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Junyan Ma ◽  
Hong Zhan ◽  
Wen Li ◽  
Liqi Zhang ◽  
Feng Yun ◽  
...  

AbstractIntrauterine adhesion (IUA) is a common gynaecological disease that develops from infection or trauma. IUA disease may seriously affect the physical and mental health of women of childbearing age, which may lead to symptoms such as hypomenorrhea or infertility. Presently, hysteroscopic transcervical resection of adhesion (TCRA) is the principal therapy for IUAs, although its function in preventing the recurrence of adhesion and preserving fertility is limited. Pharmaceuticals such as hormones and vasoactive agents and the placement of nondegradable stents are the most common postoperative adjuvant therapy methods. However, the repair of injured endometrium is relatively restricted due to the different anatomical structures of the endometrium. Recently, the treatment outcome of IUAs has improved with the advancement of hysteroscopic techniques. In particular, the application of bioactive scaffolds combined with tissue engineering technology has proven to have high therapeutic potential or endometrial repair in IUA treatment. Herein, this review has summarized past therapeutic strategies, including postoperative adjuvant therapy, cell or therapeutic molecular delivery therapy methods and bioactive scaffold-based tissue engineering methods. Therefore, this review presented the recent therapeutic strategies for repairing endometrium treatment and pointed out the issues of clinical concern to provide alternative methods for the management of IUAs.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Yuliet Montoya ◽  
José Cardenas ◽  
John Bustamante ◽  
Raúl Valencia

Abstract Background Nowadays, the engineering vascular grafts with a diameter less than 6 mm by means of electrospinning, is an attracted alternative technique to create different three-dimensional microenvironments with appropriate physicochemical properties to promote the nutrient transport and to enable the bioactivity, dynamic growth and differentiation of cells. Although the performance of a well-designed porous wall is key for these functional requirements maintaining the mechanical function, yet predicting the flow rate and cellular transport are still not widely understood and many questions remain open about new configurations of wall can be used for modifying the conventional electrospun samples. The aim of the present study was to evaluate the effect of fabrication techniques on scaffolds composed of bovine gelatin and polycaprolactone (PCL) developed by sequential electrospinning and co-electrospinning, on the morphology and fluid-mechanical properties of the porous wall. Methodology For this purpose, small diameter tubular structures were manufactured and experimental tests were performed to characterize the crystallinity, morphology, wettability, permeability, degradability, and mechanical properties. Some samples were cross-linked with Glutaraldehyde (GA) to improve the stability of the gelatin fiber. In addition, it was analyzed how the characteristics of the scaffold favored the levels of cell adhesion and proliferation in an in vitro model of 3T3 fibroblasts in incubation periods of 24, 48 and 72 h. Results It was found that in terms of the morphology of tubular scaffolds, the co-electrospun samples had a better alignment with higher values of fiber diameters and apparent pore area than the sequential samples. The static permeability was more significant in the sequential scaffolds and the hydrophilic was higher in the co-electrospun samples. Therefore, the gelatin mass losses were less in the co-electrospun samples, which promote cellular functions. In terms of mechanical properties, no significant differences were observed for different types of samples. Conclusion This research concluded that the tubular scaffolds generated by sequential and co-electrospinning with modification in the microarchitecture could be used as a vascular graft, as they have better permeability and wettability, interconnected pores, and a circumferential tensile strength similar to native vessel compared to the commercial graft analyzed.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Yong Kiel Sung ◽  
Dae Ryeong Lee ◽  
Dong June Chung

Abstract Background Medical hemostatic biological materials are necessary for the development of the process of preventing and stopping damaged intravascular bleeding. In the process, some red blood cells and white blood cells are trapped in nets. The resulting plug is called a blood clot. This is often a good step in wound healing, but separation of blood clots from blood vessel walls can cause serious health problems. Main body The advance in the development of hemostatic biomaterials is necessary for biomedical application. Firstly, the historical background of artificial hemostasis has been included and the current research of hemostasis has been included in more detail. Secondly, the current research of hemostasis has been included on the oxidized cellulose-based hemostatic biomaterials such as starch based on composite cross-linking hemostatic networks, hemostatic materials on NHS-esters, hemostatic agent from local materials and biomaterials for hemostatic management. Thirdly, polysaccharide hemostatic materials, bio-inspired adhesive catechol-conjugated chitosan, mesoporous silica and bioactive glasses for improved hemostasis, minimally invasive hemostatic biomaterials and chitosan-base materials for hemostatic application have been included. Fourthly, the biological properties of natural hemostatic agent by plasma technology and the hemostatic agents based on gelatin-microbial transglutaminase mixes have been also included. Conclusion Current research on hemostasis includes hemostatic biomaterials such as cellulose-based hemostatic starch based on a complex cross-linked hemostatic network. It also includes polysaccharide hemostatic materials, biomimetic adhesive catechol-binding chitosan, mesoporous silica or physiologically active glass for hemostatic improvement, minimally invasive hemostatic chitosan-based materials, and gelatin-microbial transglutaminase-based hemostatic agents. Future studies should focus on modular combination of hemostatic imitation and reinforcement mechanisms of different materials and technologies to find the optimal system to promote and strengthen active platelet or platelet imitation aggregation in bleeding sites. The second optionally increases the production of thrombin and fiber formation at the site. Third, the formed fibrin biopolymer network has strengthened to reduce thrombosis and amplify hemostasis.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Yong Hwa Hwang ◽  
Youn-Jung Kim ◽  
Dong Yun Lee

Abstract Background Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in several biomedical engineering in vivo. Although various surface modifications have been made to these non-biodegradable nanoparticles to make them more biocompatible, their toxic potential still remains a major concern. Method In this study, we newly developed unfractionated heparin (UFH)-coated and low molecular weight heparin (LMWH)-coated SPIO nanoparticles through surface modification engineering, which was compared with commercially available dextran-coated SPIO nanoparticles. Their toxicity such as cytotoxicity, single cell gel electrophoresis (SCGE) comet assay, intracellular reactive oxygen species (ROS) content and cellular apoptosis was evaluated to hepatic HepG2 and renal HK-2 cells. Results When UFH-, LMWH- or dextran-coated SPIO nanoparticles were applied, they did not affect the viability of HepG2 cell. However, HK-2 cells were more sensitive to dextran-coated SPIO nanoparticles than others. In genotoxicity assay using SCGE comet, DNA tail moment values in the groups treated with dextran- and LMWH-coated SPIO nanoparticles significantly increased. However, UFH-coated SPIO nanoparticles was only significantly lowing DNA tail moment value. In addition, UFH-coated SPIO nanoparticles had lower cytotoxicity in HepG2 and HK-2 cells compared to dextran-coated SPIO nanoparticles, especially in terms of apoptosis and intracellular ROS production. Conclusions Collectively, it is possible that UFH- coated SPIO nanoparticles can be used as alternative negative contrast agents.


Sign in / Sign up

Export Citation Format

Share Document