scholarly journals The Use of Total Human Bone Marrow Fraction in a Direct Three-Dimensional Expansion Approach for Bone Tissue Engineering Applications: Focus on Angiogenesis and Osteogenesis

2015 ◽  
Vol 21 (5-6) ◽  
pp. 861-874 ◽  
Author(s):  
Julien Guerrero ◽  
Hugo Oliveira ◽  
Sylvain Catros ◽  
Robin Siadous ◽  
Sidi-Mohammed Derkaoui ◽  
...  
2007 ◽  
Vol 342-343 ◽  
pp. 369-372 ◽  
Author(s):  
S.J. Heo ◽  
S.E. Kim ◽  
Yong Taek Hyun ◽  
D.H. Kim ◽  
Hyang Mi Lee ◽  
...  

This study evaluated the potential of the PCL (poly -caprolactone)/HA(Hydroxyapatite) composite materials as a scaffold for bone regeneration. For this, we fabricated scaffolds utilizing salt leaching method. The PCL/HA composite scaffolds were prepared with various HA contents (20wt%, 40wt%, 60 wt %). To ensure the potential for the scaffolds, porosity tests were conducted along with SEM observations. The porosity decreased with the increase of the contents of HA particles. The porosity of the composite with the highest contents of HA was still adoptable (~85%). In addition, the PCL/HA composite scaffolds were evaluated for their ability of osteogenic differentiation with human bone marrow stromal cell (hBMSC) in vitro. Alkaline phosphatase (ALP) activity, markers for osteoblastic differentiation, and total protein contents were evaluated in hBMSCs following 14 days of cultivation. The addition of HA particles enhanced proliferation of hBMSC during the test. Also, the differentiation ability of the cells was increased as HA particles were added. In this study, we concluded that PCL/HA composite scaffolds has great potential as a scaffold for bone tissue engineering.


2002 ◽  
Vol 8 (6) ◽  
pp. 941-953 ◽  
Author(s):  
Karine Anselme ◽  
Odile Broux ◽  
Benoit Noel ◽  
Bertrand Bouxin ◽  
Gerard Bascoulergue ◽  
...  

2006 ◽  
Vol 0 (0) ◽  
pp. 060913044658010
Author(s):  
Fei Dai ◽  
Dongwen Shi ◽  
Weifeng He ◽  
Jun Wu ◽  
Gaoxin Luo ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1880 ◽  
Author(s):  
Ulrike Rottensteiner-Brandl ◽  
Rainer Detsch ◽  
Bapi Sarker ◽  
Lara Lingens ◽  
Katrin Köhn ◽  
...  

Alginate dialdehyde (ADA), gelatin, and nano-scaled bioactive glass (nBG) particles are being currently investigated for their potential use as three-dimensional scaffolding materials for bone tissue engineering. ADA and gelatin provide a three-dimensional scaffold with properties supporting cell adhesion and proliferation. Combined with nanocristalline BG, this composition closely mimics the mineral phase of bone. In the present study, rat bone marrow derived mesenchymal stem cells (MSCs), commonly used as an osteogenic cell source, were evaluated after encapsulation into ADA-gelatin hydrogel with and without nBG. High cell survival was found in vitro for up to 28 days with or without addition of nBG assessed by calcein staining, proving the cell-friendly encapsulation process. After subcutaneous implantation into rats, survival was assessed by DAPI/TUNEL fluorescence staining. Hematoxylin-eosin staining and immunohistochemical staining for the macrophage marker ED1 (CD68) and the endothelial cell marker lectin were used to evaluate immune reaction and vascularization. After in vivo implantation, high cell survival was found after 1 week, with a notable decrease after 4 weeks. Immune reaction was very mild, proving the biocompatibility of the material. Angiogenesis in implanted constructs was significantly improved by cell encapsulation, compared to cell-free beads, as the implanted MSCs were able to attract endothelial cells. Constructs with nBG showed higher numbers of vital MSCs and lectin positive endothelial cells, thus showing a higher degree of angiogenesis, although this difference was not significant. These results support the use of ADA/gelatin/nBG as a scaffold and of MSCs as a source of osteogenic cells for bone tissue engineering. Future studies should however improve long term cell survival and focus on differentiation potential of encapsulated cells in vivo.


2016 ◽  
Vol 4 (20) ◽  
pp. 3562-3574 ◽  
Author(s):  
E. A. Aisenbrey ◽  
S. J. Bryant

Three dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document