Gene Expression Profiles Differ Markedly in Mouse Strains That Are (or Are Not) Susceptible to Hyperthyroidism Induced Using Thyrotropin Receptor-Expressing Adenovirus

Thyroid ◽  
2005 ◽  
Vol 15 (11) ◽  
pp. 1229-1237 ◽  
Author(s):  
Chun-Rong Chen ◽  
Rula Abbud ◽  
Charles Wang ◽  
Yongxi Tan ◽  
Basil Rapoport ◽  
...  
2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Shuin Park ◽  
Sara Ranjbarvaziri ◽  
Fides Lay ◽  
Peng Zhao ◽  
Aldons J Lusis ◽  
...  

Fibroblasts are a heterogeneous population of cells that function within the injury response mechanisms across various tissues. Despite their importance in pathophysiology, the effects of different genetic backgrounds on fibroblast contribution to the development of disease has yet to be addressed. It has previously been shown that mice in the Hybrid Mouse Diversity Panel, which consists of 110 inbred mouse strains, display a spectrum in severity of cardiac fibrosis in response to chronic treatment of isoproterenol (ISO). Here, we characterized cardiac fibroblasts (CFbs) from three different mouse strains (C57BL/6J, C3H/HeJ, and KK/HIJ) which exhibited varying degrees of fibrosis after ISO treatment. The select strains of mice underwent sham or ISO treatment via intraperitoneally-implanted osmotic pumps for 21 days. Masson’s Trichrome staining showed significant differences in fibrosis in response to ISO, with KK/HIJ mice demonstrating the highest levels, C3H/HeJ exhibiting milder levels, and C57BL/6J demonstrating little to no fibrosis. When CFbs were isolated and cultured from each strain, the cells demonstrated similar traits at the basal level but responded to ISO stimuli in a strain-specific manner. Likewise, CFbs demonstrated differential behavior and gene expression in vivo in response to ISO. ISO treatment caused CFbs to proliferate similarly across all strains, however, immunofluorescence staining showed differential levels of CFb activation. Additionally, RNA-sequencing analysis revealed unique gene expression profiles of all three strains upon ISO treatment. Our study depicts the phenotypic heterogeneity of CFbs across different strains of mice and our results suggest that ISO-induced cardiac fibrosis is a complex process that is independent of fibroblast proliferation and is mainly driven by the activation/inhibition of genes involved in pro-fibrotic pathways.


2005 ◽  
Vol 6 (1) ◽  
Author(s):  
Karen HS Wilson ◽  
Richard A McIndoe ◽  
Sarah Eckenrode ◽  
Laurence Morel ◽  
Anupam Agarwal ◽  
...  

2007 ◽  
Vol 31 (3) ◽  
pp. 429-440 ◽  
Author(s):  
Vikas Misra ◽  
Hannah Lee ◽  
Anju Singh ◽  
Kewu Huang ◽  
Rajesh K. Thimmulappa ◽  
...  

This study identified gene expression profiles that provided evidence for genomic mechanisms underlying the pathophysiology of aging lung. Aging lungs from C57BL/6 (B6) and DBA/2 (D2) mouse strains differ in physiology and morphometry. Lungs were harvested from B6 mice at 2, 18, and 26 mo and from D2 mice at 2 and 18 mo of age. Purified RNA was subjected to oligonucleotide microarray analyses, and differential expression analyses were performed for comparison of various data sets. A significant majority of differentially expressed genes were upregulated with aging in both strains. Aging D2 lungs uniquely exhibited upregulation in stress-response genes including xenobiotic detoxification cascades. In contrast, aging B6 lungs showed downregulation of heat shock-response genes. Age-dependent downregulation of genes common to both B6 and D2 strains included several collagen genes (e.g., Col1a1 and Col3a1). There was a greater elastin gene ( Eln) expression in D2 mice at 2 mo, and Eln was uniquely downregulated with age in this strain. The matrix metalloproteinase 14 gene ( Mmp14), critical to alveolar structural integrity, was also downregulated with aging in D2 mice only. Several polymorphisms in the regulatory and untranslated regions of Mmp14 were identified between strains, suggesting that variation in Mmp14 gene regulation contributes to accelerated aging of lungs in D2 mice. In summary, lungs of B6 and D2 mice age with variable rates at the gene expression level, and these quantifiable genomic differences provide a template for understanding the variability in age-dependent changes in lung structure and function.


2010 ◽  
Vol 40 (2) ◽  
pp. 196-203 ◽  
Author(s):  
Johannes Leonhardt ◽  
Joachim F. Kuebler ◽  
Carmen Turowski ◽  
Thomas Tschernig ◽  
Robert Geffers ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 349-350
Author(s):  
Gaelle Fromont ◽  
Michel Vidaud ◽  
Alain Latil ◽  
Guy Vallancien ◽  
Pierre Validire ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document