scholarly journals Finite quasi-quantum groups of rank two

2021 ◽  
Vol 8 (22) ◽  
pp. 635-678
Author(s):  
Hua-Lin Huang ◽  
Gongxiang Liu ◽  
Yuping Yang ◽  
Yu Ye

This is a contribution to the structure theory of finite pointed quasi-quantum groups. We classify all finite-dimensional connected graded pointed Majid algebras of rank two which are not twist equivalent to ordinary pointed Hopf algebras.

2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


1992 ◽  
Vol 07 (25) ◽  
pp. 6175-6213 ◽  
Author(s):  
T. TJIN

We give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups we study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then we explain in detail the concept of quantization for them. As an example the quantization of sl2 is explicitly carried out. Next we show how quantum groups are related to the Yang-Baxter equation and how they can be used to solve it. Using the quantum double construction we explicitly construct the universal R matrix for the quantum sl2 algebra. In the last section we deduce all finite-dimensional irreducible representations for q a root of unity. We also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.


2021 ◽  
Vol 28 (02) ◽  
pp. 351-360
Author(s):  
Yu Wang ◽  
Zhihua Wang ◽  
Libin Li

Let [Formula: see text] be a finite-dimensional pointed Hopf algebra of rank one over an algebraically closed field of characteristic zero. In this paper we show that any finite-dimensional indecomposable [Formula: see text]-module is generated by one element. In particular, any indecomposable submodule of [Formula: see text] under the adjoint action is generated by a special element of [Formula: see text]. Using this result, we show that the Hopf algebra [Formula: see text] is a principal ideal ring, i.e., any two-sided ideal of [Formula: see text] is generated by one element. As an application, we give explicitly the generators of ideals, primitive ideals, maximal ideals and completely prime ideals of the Taft algebras.


2012 ◽  
Vol 23 (06) ◽  
pp. 1250066
Author(s):  
SHOUCHUAN ZHANG ◽  
YAO-ZHONG ZHANG

We prove that Nichols algebras of irreducible Yetter–Drinfeld modules over classical Weyl groups A ⋊ 𝕊nsupported by 𝕊nare infinite dimensional, except in three cases. We give necessary and sufficient conditions for Nichols algebras of Yetter–Drinfeld modules over classical Weyl groups A ⋊ 𝕊nsupported by A to be finite dimensional.


2017 ◽  
Vol 28 (11) ◽  
pp. 1750087
Author(s):  
Iván Angiono ◽  
César Galindo

We give a characterization of finite pointed tensor categories obtained as de-equivariantizations of the category of corepresentations of finite-dimensional pointed Hopf algebras with abelian group of group-like elements only in terms of the (cohomology class of the) associator of the pointed part. As an application we prove that every coradically graded pointed finite braided tensor category is a de-equivariantization of the category of corepresentations of a finite-dimensional pointed Hopf algebras with abelian group of group-like elements.


2011 ◽  
Vol 183 (1) ◽  
pp. 417-444 ◽  
Author(s):  
Gastón Andrés García ◽  
Agustín García Iglesias

2010 ◽  
Vol 171 (1) ◽  
pp. 375-417 ◽  
Author(s):  
Nicolás Andruskiewitsch ◽  
Hans-Jürgen Schneider

Sign in / Sign up

Export Citation Format

Share Document