Ideals of Finite-Dimensional Pointed Hopf Algebras of Rank One
Let [Formula: see text] be a finite-dimensional pointed Hopf algebra of rank one over an algebraically closed field of characteristic zero. In this paper we show that any finite-dimensional indecomposable [Formula: see text]-module is generated by one element. In particular, any indecomposable submodule of [Formula: see text] under the adjoint action is generated by a special element of [Formula: see text]. Using this result, we show that the Hopf algebra [Formula: see text] is a principal ideal ring, i.e., any two-sided ideal of [Formula: see text] is generated by one element. As an application, we give explicitly the generators of ideals, primitive ideals, maximal ideals and completely prime ideals of the Taft algebras.