Ideals of Finite-Dimensional Pointed Hopf Algebras of Rank One

2021 ◽  
Vol 28 (02) ◽  
pp. 351-360
Author(s):  
Yu Wang ◽  
Zhihua Wang ◽  
Libin Li

Let [Formula: see text] be a finite-dimensional pointed Hopf algebra of rank one over an algebraically closed field of characteristic zero. In this paper we show that any finite-dimensional indecomposable [Formula: see text]-module is generated by one element. In particular, any indecomposable submodule of [Formula: see text] under the adjoint action is generated by a special element of [Formula: see text]. Using this result, we show that the Hopf algebra [Formula: see text] is a principal ideal ring, i.e., any two-sided ideal of [Formula: see text] is generated by one element. As an application, we give explicitly the generators of ideals, primitive ideals, maximal ideals and completely prime ideals of the Taft algebras.

2010 ◽  
Vol 09 (01) ◽  
pp. 11-15 ◽  
Author(s):  
DAIJIRO FUKUDA

This paper contributes to the classification of finite dimensional Hopf algebras. It is shown that every Hopf algebra of dimension 30 over an algebraically closed field of characteristic zero is semisimple and thus isomorphic to a group algebra or the dual of a group algebra.


2009 ◽  
Vol 08 (05) ◽  
pp. 633-672 ◽  
Author(s):  
FERNANDO FANTINO

Let G be a Mathieu simple group, s ∈ G, [Formula: see text] the conjugacy class of s and ρ an irreducible representation of the centralizer of s. We prove that either the Nichols algebra [Formula: see text] is infinite-dimensional or the braiding of the Yetter–Drinfeld module [Formula: see text] is negative. We also show that if G = M22 or M24, then the group algebra of G is the only (up to isomorphisms) finite-dimensional complex pointed Hopf algebra with group-likes isomorphic to G.


Author(s):  
Nicolás Andruskiewitsch ◽  
Giovanna Carnovale ◽  
Gastón Andrés García

Abstract We show that all classes that are neither semisimple nor unipotent in finite simple Chevalley or Steinberg groups different from $$\mathbf {PSL}_n(q)$$ PSL n ( q ) collapse (i.e. are never the support of a finite-dimensional Nichols algebra). As a consequence, we prove that the only finite-dimensional pointed Hopf algebra whose group of group-like elements is $$\mathbf {PSp}_{2n}(q)$$ PSp 2 n ( q ) , $$\mathbf {P}{\varvec{\Omega }}^+_{4n}(q)$$ P Ω 4 n + ( q ) , $$\mathbf {P}{\varvec{\Omega }}^-_{4n}(q)$$ P Ω 4 n - ( q ) , $$^3D_4(q)$$ 3 D 4 ( q ) , $$E_7(q)$$ E 7 ( q ) , $$E_8(q)$$ E 8 ( q ) , $$F_4(q)$$ F 4 ( q ) , or $$G_2(q)$$ G 2 ( q ) with q even is the group algebra.


2010 ◽  
Vol 09 (02) ◽  
pp. 195-208 ◽  
Author(s):  
SEBASTIÁN FREYRE ◽  
MATÍAS GRAÑA ◽  
LEANDRO VENDRAMIN

We compute necessary conditions on Yetter–Drinfeld modules over the groups PGL(2, q) = PGL(2, 𝔽q) and PSL(2, q) = PSL(2, 𝔽q) to generate finite-dimensional Nichols algebras. This is a first step towards a classification of pointed Hopf algebras with group of group-likes isomorphic to one of these groups. As a by-product of the techniques developed in this work, we prove that any finite-dimensional pointed Hopf algebra over the Mathieu groups M20 or M21 = PSL(3, 4) is the group algebra.


2001 ◽  
Vol 130 (3) ◽  
pp. 441-474 ◽  
Author(s):  
MARK HOVEY ◽  
JOHN H. PALMIERI

We discuss a general method for classifying certain subcategories of the category of finite-dimensional modules over a finite-dimensional co-commutative Hopf algebra B. Our method is based on that of Benson–Carlson–Rickard [BCR1], who classify such subcategories when B = kG, the group ring of a finite group G over an algebraically closed field k. We get a similar classification when B is a finite sub-Hopf algebra of the mod 2 Steenrod algebra, with scalars extended to the algebraic closure of F2. Along the way, we prove a Quillen stratification theorem for cohomological varieties of modules over any B, in terms of quasi-elementary sub-Hopf algebras of B.


2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


Author(s):  
Ken Brown ◽  
Angela Ankomaah Tabiri

AbstractLet $\mathcal {C}$ C be a decomposable plane curve over an algebraically closed field k of characteristic 0. That is, $\mathcal {C}$ C is defined in k2 by an equation of the form g(x) = f(y), where g and f are polynomials of degree at least two. We use this data to construct three affine pointed Hopf algebras, A(x, a, g), A(y, b, f) and A(g, f), in the first two of which g [resp. f ] are skew primitive central elements, with the third being a factor of the tensor product of the first two. We conjecture that A(g, f) contains the coordinate ring $\mathcal {O}(\mathcal {C})$ O ( C ) of $\mathcal {C}$ C as a quantum homogeneous space, and prove this when each of g and f has degree at most five or is a power of the variable. We obtain many properties of these Hopf algebras, and show that, for small degrees, they are related to previously known algebras. For example, when g has degree three A(x, a, g) is a PBW deformation of the localisation at powers of a generator of the downup algebra A(− 1,− 1,0). The final section of the paper lists some questions for future work.


2018 ◽  
Vol 62 (1) ◽  
pp. 43-57
Author(s):  
TAO YANG ◽  
XUAN ZHOU ◽  
HAIXING ZHU

AbstractFor a multiplier Hopf algebra pairing 〈A,B〉, we construct a class of group-cograded multiplier Hopf algebras D(A,B), generalizing the classical construction of finite dimensional Hopf algebras introduced by Panaite and Staic Mihai [Isr. J. Math. 158 (2007), 349–365]. Furthermore, if the multiplier Hopf algebra pairing admits a canonical multiplier in M(B⊗A) we show the existence of quasitriangular structure on D(A,B). As an application, some special cases and examples are provided.


Sign in / Sign up

Export Citation Format

Share Document