Duality theorems for several fixed point operators associated to periodic problems for ordinary differential equations

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Yuanhong Wei

We study some second order ordinary differential equations. We establish the existence and uniqueness in some appropriate function space. By using Schauder’s fixed-point theorem, new results on the existence and uniqueness of periodic solutions are obtained.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 677 ◽  
Author(s):  
Kadry ◽  
Alferov ◽  
Ivanov ◽  
Korolev ◽  
Selitskaya

In this paper, a new theorems of the derived numbers method to estimate the number of periodic solutions of first-order ordinary differential equations are formulated and proved. Approaches to estimate the number of periodic solutions of ordinary differential equations are considered. Conditions that allow us to determine both upper and lower bounds for these solutions are found. The existence and stability of periodic problems are considered.


Author(s):  
Michael Hopkins ◽  
Mantas Mikaitis ◽  
Dave R. Lester ◽  
Steve Furber

Although double-precision floating-point arithmetic currently dominates high-performance computing, there is increasing interest in smaller and simpler arithmetic types. The main reasons are potential improvements in energy efficiency and memory footprint and bandwidth. However, simply switching to lower-precision types typically results in increased numerical errors. We investigate approaches to improving the accuracy of reduced-precision fixed-point arithmetic types, using examples in an important domain for numerical computation in neuroscience: the solution of ordinary differential equations (ODEs). The Izhikevich neuron model is used to demonstrate that rounding has an important role in producing accurate spike timings from explicit ODE solution algorithms. In particular, fixed-point arithmetic with stochastic rounding consistently results in smaller errors compared to single-precision floating-point and fixed-point arithmetic with round-to-nearest across a range of neuron behaviours and ODE solvers. A computationally much cheaper alternative is also investigated, inspired by the concept of dither that is a widely understood mechanism for providing resolution below the least significant bit in digital signal processing. These results will have implications for the solution of ODEs in other subject areas, and should also be directly relevant to the huge range of practical problems that are represented by partial differential equations. This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance computational science’.


2013 ◽  
Vol 13 (2) ◽  
Author(s):  
Klaudiusz Wójcik

AbstractThe aim of this note is to present a generalization of the topological method for detecting chaotic dynamics in a periodic local processes generated by non-autonomous ordinary differential equations, based on the notion of periodic segments.


Sign in / Sign up

Export Citation Format

Share Document