Quantum electrodynamics of relativistic bound states with cutoffs. II

Author(s):  
Jean-Marie Barbaroux ◽  
Mouez Dimassi ◽  
Jean-Claude Guillot
2004 ◽  
Vol 01 (02) ◽  
pp. 271-314 ◽  
Author(s):  
JEAN-MARIE BARBAROUX ◽  
MOUEZ DIMASSI ◽  
JEAN-CLAUDE GUILLOT

We consider a Hamiltonian with ultraviolet and infrared cutoffs, describing the interaction of relativistic electrons and positrons in the Coulomb potential with photons in Coulomb gauge. The interaction includes both interaction of the current density with transversal photons and the Coulomb interaction of charge density with itself. We prove that the Hamiltonian is self-adjoint and has a ground state for sufficiently small coupling constants.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1323 ◽  
Author(s):  
G. Jordan Maclay

Understanding the hydrogen atom has been at the heart of modern physics. Exploring the symmetry of the most fundamental two body system has led to advances in atomic physics, quantum mechanics, quantum electrodynamics, and elementary particle physics. In this pedagogic review, we present an integrated treatment of the symmetries of the Schrodinger hydrogen atom, including the classical atom, the SO(4) degeneracy group, the non-invariance group or spectrum generating group SO(4,1), and the expanded group SO(4,2). After giving a brief history of these discoveries, most of which took place from 1935–1975, we focus on the physics of the hydrogen atom, providing a background discussion of the symmetries, providing explicit expressions for all of the manifestly Hermitian generators in terms of position and momenta operators in a Cartesian space, explaining the action of the generators on the basis states, and giving a unified treatment of the bound and continuum states in terms of eigenfunctions that have the same quantum numbers as the ordinary bound states. We present some new results from SO(4,2) group theory that are useful in a practical application, the computation of the first order Lamb shift in the hydrogen atom. By using SO(4,2) methods, we are able to obtain a generating function for the radiative shift for all levels. Students, non-experts, and the new generation of scientists may find the clearer, integrated presentation of the symmetries of the hydrogen atom helpful and illuminating. Experts will find new perspectives, even some surprises.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450163 ◽  
Author(s):  
Horace W. Crater ◽  
Luca Lusanna

We make a critical comparison of relativistic and nonrelativistic classical and quantum mechanics of particles in inertial frames as well of the open problems in particle localization at both levels. The solution of the problems of the relativistic center-of-mass, of the clock synchronization convention needed to define relativistic 3-spaces and of the elimination of the relative times in the relativistic bound states leads to a description with a decoupled nonlocal (nonmeasurable) relativistic center-of-mass and with only relative variables for the particles (single particle subsystems do not exist). We analyze the implications for entanglement of this relativistic spatial nonseparability not existing in nonrelativistic entanglement. Then, we try to reconcile the two visions showing that also at the nonrelativistic level in real experiments only relative variables are measured with their directions determined by the effective mean classical trajectories of particle beams present in the experiment. The existing results about the nonrelativistic and relativistic localization of particles and atoms support the view that detectors only identify effective particles following this type of trajectories: these objects are the phenomenological emergent aspect of the notion of particle defined by means of the Fock spaces of quantum field theory.


2006 ◽  
Vol 55 (8) ◽  
pp. 3875
Author(s):  
Chen Chang-Yuan ◽  
Sun Dong-Sheng ◽  
Lu Fa-Lin

Pramana ◽  
2017 ◽  
Vol 88 (4) ◽  
Author(s):  
MAHDI ESHGHI ◽  
HOSSEIN MEHRABAN ◽  
SAMEER M IKHDAIR

2019 ◽  
Vol 1390 ◽  
pp. 012083 ◽  
Author(s):  
A V Eskin ◽  
V I Korobov ◽  
A P Martynenko ◽  
V V Sorokin

1993 ◽  
Vol 48 (3) ◽  
pp. R973-R977 ◽  
Author(s):  
N. K. Devine ◽  
S. J. Wallace

Sign in / Sign up

Export Citation Format

Share Document