On the algebraic union of strongly measure zero sets and their relatives with sets of real numbers

Author(s):  
Tomasz Weiss
Keyword(s):  
1998 ◽  
Vol 63 (1) ◽  
pp. 301-324 ◽  
Author(s):  
Andrej Nowik ◽  
Marion Scheepers ◽  
Tomasz Weiss

AbstractWe prove the following theorems:(1) IfXhas strong measure zero and ifYhas strong first category, then their algebraic sum has property S0.(2) IfXhas Hurewicz's covering property, then it has strong measure zero if, and only if, its algebraic sum with any first category set is a first category set.(3) IfXhas strong measure zero and Hurewicz's covering property then its algebraic sum with any set inis a set in. (is included in the class of sets always of first category, and includes the class of strong first category sets.)These results extend: Fremlin and Miller's theorem that strong measure zero sets having Hurewicz's property have Rothberger's property, Galvin and Miller's theorem that the algebraic sum of a set with the γ-property and of a first category set is a first category set, and Bartoszyfński and Judah's characterization of-sets. They also characterize the property (*) introduced by Gerlits and Nagy in terms of older concepts.


1991 ◽  
Vol 56 (1) ◽  
pp. 103-107
Author(s):  
Maxim R. Burke

AbstractWe investigate the cofinality of the partial order κ of functions from a regular cardinal κ into the ideal of Lebesgue measure zero subsets of R. We show that when add () = κ and the covering lemma holds with respect to an inner model of GCH, then cf (κ) = max{cf(κκ), cf([cf()]κ)}. We also give an example to show that the covering assumption cannot be removed.


2017 ◽  
Vol 38 (5) ◽  
pp. 1627-1641
Author(s):  
SIMON BAKER

Let $\unicode[STIX]{x1D6FD}\in (1,2)$ be a real number. For a function $\unicode[STIX]{x1D6F9}:\mathbb{N}\rightarrow \mathbb{R}_{\geq 0}$, define $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$ to be the set of $x\in \mathbb{R}$ such that for infinitely many $n\in \mathbb{N},$ there exists a sequence $(\unicode[STIX]{x1D716}_{i})_{i=1}^{n}\in \{0,1\}^{n}$ satisfying $0\leq x-\sum _{i=1}^{n}(\unicode[STIX]{x1D716}_{i}/\unicode[STIX]{x1D6FD}^{i})\leq \unicode[STIX]{x1D6F9}(n)$. In Baker [Approximation properties of $\unicode[STIX]{x1D6FD}$-expansions. Acta Arith. 168 (2015), 269–287], the author conjectured that for Lebesgue almost every $\unicode[STIX]{x1D6FD}\in (1,2)$, the condition $\sum _{n=1}^{\infty }2^{n}\unicode[STIX]{x1D6F9}(n)=\infty$ implies that $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$ is of full Lebesgue measure within $[0,1/(\unicode[STIX]{x1D6FD}-1)]$. In this paper we make a significant step towards proving this conjecture. We prove that given a sequence of positive real numbers $(\unicode[STIX]{x1D714}_{n})_{n=1}^{\infty }$ satisfying $\lim _{n\rightarrow \infty }\unicode[STIX]{x1D714}_{n}=\infty$, for Lebesgue almost every $\unicode[STIX]{x1D6FD}\in (1.497,\ldots ,2)$, the set $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D714}_{n}\cdot 2^{-n})$ is of full Lebesgue measure within $[0,1/(\unicode[STIX]{x1D6FD}-1)]$. We also study the case where $\sum _{n=1}^{\infty }2^{n}\unicode[STIX]{x1D6F9}(n)<\infty$ in which the set $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$ has Lebesgue measure zero. Applying the mass transference principle developed by Beresnevich and Velani in [A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164(3) (2006), 971–992], we obtain some results on the Hausdorff dimension and the Hausdorff measure of $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$.


1999 ◽  
Vol 64 (3) ◽  
pp. 1295-1306 ◽  
Author(s):  
Marion Scheepers

AbstractIn a previous paper—[17]—we characterized strong measure zero sets of reals in terms of a Ramseyan partition relation on certain subspaces of the Alexandroff duplicate of the unit interval. This framework gave only indirect access to the relevant sets of real numbers. We now work more directly with the sets in question, and since it costs little in additional technicalities, we consider the more general context of metric spaces and prove:1. If a metric space has a covering property of Hurewicz and has strong measure zero, then its product with any strong measure zero metric space is a strong measure zero metric space (Theorem 1 and Lemma 3).2. A subspace X of a σ-compact metric space Y has strong measure zero if, and only if, a certain Ramseyan partition relation holds for Y (Theorem 9).3. A subspace X of a σ-compact metric space Y has strong measure zero in all finite powers if, and only if, a certain Ramseyan partition relation holds for Y (Theorem 12).Then 2 and 3 yield characterizations of strong measure zeroness for σ-totally bounded metric spaces in terms of Ramseyan theorems.


1990 ◽  
Vol 55 (3) ◽  
pp. 1022-1036 ◽  
Author(s):  
Arnold W. Miller

AbstractIn this paper we ask the question: to what extent do basic set theoretic properties of Loeb measure depend on the nonstandard universe and on properties of the model of set theory in which it lies? We show that, assuming Martin's axiom and κ-saturation, the smallest cover by Loeb measure zero sets must have cardinality less than κ. In contrast to this we show that the additivity of Loeb measure cannot be greater than ω1. Define cof(H) as the smallest cardinality of a family of Loeb measure zero sets which cover every other Loeb measure zero set. We show that card(⌊log2(H)⌋) ≤ cof (H) ≤ card(2H), where card is the external cardinality. We answer a question of Paris and Mills concerning cuts in nonstandard models of number theory. We also present a pair of nonstandard universes M ≼ N and hyperfinite integer H ∈ M such that H is not enlarged by N, 2H contains new elements, but every new subset of H has Loeb measure zero. We show that it is consistent that there exists a Sierpiński set in the reals but no Loeb-Sierpiński set in any nonstandard universe. We also show that it is consistent with the failure of the continuum hypothesis that Loeb-Sierpiński sets can exist in some nonstandard universes and even in an ultrapower of a standard universe.


1990 ◽  
Vol 55 (2) ◽  
pp. 674-677
Author(s):  
Janusz Pawlikowski

AbstractAny finite support iteration of posets with precalibre ℵ1 which has the length of cofinahty greater than ω1 yields a model for the dual Borel conjecture in which the real line is covered by ℵ1 strong measure zero sets.


Sign in / Sign up

Export Citation Format

Share Document