Splitting fields of real irreducible representations of finite groups
We show that any irreducible representation ρ \rho of a finite group G G of exponent n n , realisable over R \mathbb {R} , is realisable over the field E ≔ Q ( ζ n ) ∩ R E≔\mathbb {Q}(\zeta _n)\cap \mathbb {R} of real cyclotomic numbers of order n n , and describe an algorithmic procedure transforming a realisation of ρ \rho over Q ( ζ n ) \mathbb {Q}(\zeta _n) to one over E E .