The single-phase Stefan problem for a general one-dimensional equation of parabolic type. The generalized solution of the Stefan problem

2021 ◽  
pp. 108128652110238
Author(s):  
Barış Erbaş ◽  
Julius Kaplunov ◽  
Isaac Elishakoff

A two-dimensional mixed problem for a thin elastic strip resting on a Winkler foundation is considered within the framework of plane stress setup. The relative stiffness of the foundation is supposed to be small to ensure low-frequency vibrations. Asymptotic analysis at a higher order results in a one-dimensional equation of bending motion refining numerous ad hoc developments starting from Timoshenko-type beam equations. Two-term expansions through the foundation stiffness are presented for phase and group velocities, as well as for the critical velocity of a moving load. In addition, the formula for the longitudinal displacements of the beam due to its transverse compression is derived.


2010 ◽  
Vol 12 (01) ◽  
pp. 85-106 ◽  
Author(s):  
S. N. ANTONTSEV ◽  
J. I. DÍAZ

We consider a general class of one-dimensional parabolic systems, mainly coupled in the diffusion term, which, in fact, can be of the degenerate type. We derive some new L1-gradient type estimates for its solutions which are uniform in the sense that they do not depend on the coefficients nor on the size of the spatial domain. We also give some applications of such estimates to gas dynamics, filtration problems, a p-Laplacian parabolic type equation and some first order systems of Hamilton–Jacobi or conservation laws type.


2018 ◽  
Vol 21 (4) ◽  
pp. 901-918 ◽  
Author(s):  
Sabrina Roscani ◽  
Domingo Tarzia

Abstract A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.


2009 ◽  
Vol 20 (2) ◽  
pp. 187-214 ◽  
Author(s):  
WAN CHEN ◽  
MICHAEL J. WARD

The dynamics and oscillatory instabilities of multi-spike solutions to the one-dimensional Gray-Scott reaction–diffusion system on a finite domain are studied in a particular parameter regime. In this parameter regime, a formal singular perturbation method is used to derive a novel ODE–PDE Stefan problem, which determines the dynamics of a collection of spikes for a multi-spike pattern. This Stefan problem has moving Dirac source terms concentrated at the spike locations. For a certain subrange of the parameters, this Stefan problem is quasi-steady and an explicit set of differential-algebraic equations characterizing the spike dynamics is derived. By analysing a nonlocal eigenvalue problem, it is found that this multi-spike quasi-equilibrium solution can undergo a Hopf bifurcation leading to oscillations in the spike amplitudes on an O(1) time scale. In another subrange of the parameters, the spike motion is not quasi-steady and the full Stefan problem is solved numerically by using an appropriate discretization of the Dirac source terms. These numerical computations, together with a linearization of the Stefan problem, show that the spike layers can undergo a drift instability arising from a Hopf bifurcation. This instability leads to a time-dependent oscillatory behaviour in the spike locations.


Sign in / Sign up

Export Citation Format

Share Document