scholarly journals On the spherical surface of smallest radius enclosing a bounded subset of $n$-dimensional euclidean space

1941 ◽  
Vol 47 (10) ◽  
pp. 771-778 ◽  
Author(s):  
L. M. Blumenthal ◽  
G. E. Wahlin

1971 ◽  
Vol 23 (3) ◽  
pp. 517-530 ◽  
Author(s):  
R. A. Adams ◽  
John Fournier

We shall be concerned throughout this paper with the Sobolev space Wm,p(G) and the existence and compactness (or lack of it) of its imbeddings (i.e. continuous inclusions) into various LP spaces over G, where G is an open, not necessarily bounded subset of n-dimensional Euclidean space En. For each positive integer m and each real p ≧ 1 the space Wm,p(G) consists of all u in LP(G) whose distributional partial derivatives of all orders up to and including m are also in LP(G). With respect to the norm1.1Wm,p(G) is a Banach space. It has been shown by Meyers and Serrin [9] that the set of functions in Cm(G) which, together with their partial derivatives of orders up to and including m, are in LP(G) forms a dense subspace of Wm,p(G).



1988 ◽  
Vol 30 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Rita Nugari

Let ℝn be the n-dimensional Euclidean space with the usual norm denoted by |·| In what follows 蒆 will denote an open bounded subset of ℝn, and its closure.For α ∊(0,1], is the space of all functions such that: is called the Holder space with exponent a and is a Banach space when endowed with the norm:where ‖u‖∞ is, as usual, defined by:



2018 ◽  
Vol 33 (13) ◽  
pp. 1850074
Author(s):  
D. G. C. McKeon

A model invariant under a supersymmetric extension of the rotation group 0(3) is mapped, using a stereographic projection, from the spherical surface S2 to two-dimensional Euclidean space. The resulting model is not translation invariant. This has the consequence that fields that are supersymmetric partners no longer have a degenerate mass. This degeneracy is restored once the radius of S2 goes to infinity, and the resulting supersymmetry transformation for the fields is now mass dependent. An analogous model on the surface S4 is introduced and its projection onto four-dimensional Euclidean space is examined. This model in turn suggests a supersymmetric model on (3 + 1)-dimensional Minkowski space.



1999 ◽  
Vol 6 (4) ◽  
pp. 323-334
Author(s):  
A. Kharazishvili

Abstract We give a characterization of all those groups of isometric transformations of a finite-dimensional Euclidean space, for which an analogue of the classical Vitali theorem [Sul problema della misura dei gruppi di punti di una retta, 1905] holds true. This characterization is formulated in purely geometrical terms.



Author(s):  
A. P. Stone

ABSTRACTGeneral shift operators for angular momentum are obtained and applied to find closed expressions for some Wigner coefficients occurring in a transformation between two equivalent representations of the four-dimensional rotation group. The transformation gives rise to analytical relations between hyperspherical harmonics in a four-dimensional Euclidean space.



Author(s):  
J. F. C. Kingman

1. A type of problem which frequently occurs in probability theory and statistics can be formulated in the following way. We are given real-valued functions f(x), gi(x) (i = 1, 2, …, k) on a space (typically finite-dimensional Euclidean space). Then the problem is to set bounds for Ef(X), where X is a random variable taking values in , about which all we know is the values of Egi(X). For example, we might wish to set bounds for P(X > a), where X is a real random variable with some of its moments given.



SIMULATION ◽  
1973 ◽  
Vol 21 (5) ◽  
pp. 145-149 ◽  
Author(s):  
John Rees Jones




2014 ◽  
Vol 46 (3) ◽  
pp. 622-642 ◽  
Author(s):  
Julia Hörrmann ◽  
Daniel Hug

We study a parametric class of isotropic but not necessarily stationary Poisson hyperplane tessellations in n-dimensional Euclidean space. Our focus is on the volume of the zero cell, i.e. the cell containing the origin. As a main result, we obtain an explicit formula for the variance of the volume of the zero cell in arbitrary dimensions. From this formula we deduce the asymptotic behaviour of the volume of the zero cell as the dimension goes to ∞.



Sign in / Sign up

Export Citation Format

Share Document