scholarly journals Supersymmetry and the rotation group

2018 ◽  
Vol 33 (13) ◽  
pp. 1850074
Author(s):  
D. G. C. McKeon

A model invariant under a supersymmetric extension of the rotation group 0(3) is mapped, using a stereographic projection, from the spherical surface S2 to two-dimensional Euclidean space. The resulting model is not translation invariant. This has the consequence that fields that are supersymmetric partners no longer have a degenerate mass. This degeneracy is restored once the radius of S2 goes to infinity, and the resulting supersymmetry transformation for the fields is now mass dependent. An analogous model on the surface S4 is introduced and its projection onto four-dimensional Euclidean space is examined. This model in turn suggests a supersymmetric model on (3 + 1)-dimensional Minkowski space.

Author(s):  
A. P. Stone

ABSTRACTGeneral shift operators for angular momentum are obtained and applied to find closed expressions for some Wigner coefficients occurring in a transformation between two equivalent representations of the four-dimensional rotation group. The transformation gives rise to analytical relations between hyperspherical harmonics in a four-dimensional Euclidean space.


1956 ◽  
Vol 8 ◽  
pp. 256-262 ◽  
Author(s):  
J. De Groot

1. Introduction. We consider the group of proper orthogonal transformations (rotations) in three-dimensional Euclidean space, represented by real orthogonal matrices (aik) (i, k = 1,2,3) with determinant + 1 . It is known that this rotation group contains free (non-abelian) subgroups; in fact Hausdorff (5) showed how to find two rotations P and Q generating a group with only two non-trivial relationsP2 = Q3 = I.


2001 ◽  
Vol 79 (8) ◽  
pp. 1099-1104
Author(s):  
R Clarkson ◽  
D.G.C. McKeon

We consider the perturbative β-function in a supersymmetric model in four-dimensional Euclidean space formulated by Zumino. It turns out to be equal to the β-function for N = 2 supersymmetric Yang–Mills theory despite differences that exist in the two models. PACS No.: 12.60Jv


2003 ◽  
Vol 81 (11) ◽  
pp. 1231-1237
Author(s):  
D.G.C. McKeon

The simplest supersymmetric extension of the group SO(4) is discussed. The superalgebra is realized in a superspace whose Bosonic subspace is the surface of a sphere S3 embedded in four-dimensional Euclidean space. By using Fermionic coordinates in this superspace, which are chiral symplectic Majorana spinors, it proves possible to devise superfield models involving a complex scalar, a pair of chiral symplectic Majorana spinors, and a complex auxiliary scalar. Kinetic terms involve operators that are isometry generators on S3.PACS No.: 11.30.Pb


1999 ◽  
Vol 6 (4) ◽  
pp. 323-334
Author(s):  
A. Kharazishvili

Abstract We give a characterization of all those groups of isometric transformations of a finite-dimensional Euclidean space, for which an analogue of the classical Vitali theorem [Sul problema della misura dei gruppi di punti di una retta, 1905] holds true. This characterization is formulated in purely geometrical terms.


Author(s):  
J. F. C. Kingman

1. A type of problem which frequently occurs in probability theory and statistics can be formulated in the following way. We are given real-valued functions f(x), gi(x) (i = 1, 2, …, k) on a space (typically finite-dimensional Euclidean space). Then the problem is to set bounds for Ef(X), where X is a random variable taking values in , about which all we know is the values of Egi(X). For example, we might wish to set bounds for P(X > a), where X is a real random variable with some of its moments given.


SIMULATION ◽  
1973 ◽  
Vol 21 (5) ◽  
pp. 145-149 ◽  
Author(s):  
John Rees Jones

Sign in / Sign up

Export Citation Format

Share Document