Some Imbedding Theorems for Sobolev Spaces

1971 ◽  
Vol 23 (3) ◽  
pp. 517-530 ◽  
Author(s):  
R. A. Adams ◽  
John Fournier

We shall be concerned throughout this paper with the Sobolev space Wm,p(G) and the existence and compactness (or lack of it) of its imbeddings (i.e. continuous inclusions) into various LP spaces over G, where G is an open, not necessarily bounded subset of n-dimensional Euclidean space En. For each positive integer m and each real p ≧ 1 the space Wm,p(G) consists of all u in LP(G) whose distributional partial derivatives of all orders up to and including m are also in LP(G). With respect to the norm1.1Wm,p(G) is a Banach space. It has been shown by Meyers and Serrin [9] that the set of functions in Cm(G) which, together with their partial derivatives of orders up to and including m, are in LP(G) forms a dense subspace of Wm,p(G).

1988 ◽  
Vol 30 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Rita Nugari

Let ℝn be the n-dimensional Euclidean space with the usual norm denoted by |·| In what follows 蒆 will denote an open bounded subset of ℝn, and its closure.For α ∊(0,1], is the space of all functions such that: is called the Holder space with exponent a and is a Banach space when endowed with the norm:where ‖u‖∞ is, as usual, defined by:


1966 ◽  
Vol 18 ◽  
pp. 1079-1084 ◽  
Author(s):  
Colin Clark

Let H0m(Ω) denote the so-called Sobolev space consisting of functions denned on a region Ω in n-dimensional Euclidean space, which together with their generalized derivatives of all orders ⩽m belong to , and which vanish in a certain sense on the boundary ∂Ω. (Precise definitions are given in the next section.) For each pair m, k of non-negative integers the inclusion H0m+k(Ω) ⊂ H0m(Ω) defines a natural “embedding” map. For the case of a bounded region Ω it is well known that these maps are completely continuous, and even, for sufficiently large k, of Hilbert-Schmidt type. We have discussed complete continuity in the case of unbounded regions in an earlier paper; here we consider conditions on Ω which imply the Hilbert-Schmidt property for embeddings.


1963 ◽  
Vol 15 ◽  
pp. 157-168 ◽  
Author(s):  
Josephine Mitchell

Let be a closed rectifiable curve, not going through the origin, which bounds a domain Ω in the complex ζ-plane. Let X = (x, y, z) be a point in three-dimensional euclidean space E3 and setThe Bergman-Whittaker operator defined by


1980 ◽  
Vol 32 (2) ◽  
pp. 421-430 ◽  
Author(s):  
Teck-Cheong Lim

Let X be a Banach space and B a bounded subset of X. For each x ∈ X, define R(x) = sup{‖x – y‖ : y ∈ B}. If C is a nonempty subset of X, we call the number R = inƒ{R(x) : x ∈ C} the Chebyshev radius of B in C and the set the Chebyshev center of B in C. It is well known that if C is weakly compact and convex, then and if, in addition, X is uniformly convex, then the Chebyshev center is unique; see e.g., [9].Let {Bα : α ∈ ∧} be a decreasing net of bounded subsets of X. For each x ∈ X and each α ∈ ∧, define


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Jianfei Wang

LetBXbe the unit ball in a complex Banach spaceX. AssumeBXis homogeneous. The generalization of the Schwarz-Pick estimates of partial derivatives of arbitrary order is established for holomorphic mappings from the unit ballBntoBXassociated with the Carathéodory metric, which extend the corresponding Chen and Liu, Dai et al. results.


2002 ◽  
Vol 65 (2) ◽  
pp. 253-258 ◽  
Author(s):  
Hitoshi Tanaka

Dedicated to Professor Kôzô Yabuta on the occasion of his 60th birthdayJ. Kinnunen proved that of P > 1, d ≤ 1 and f is a function in the Sobolev space W1,P(Rd), then the first order weak partial derivatives of the Hardy-Littlewood maximal function ℳf belong to LP(Rd). We shall show that, when d = 1, Kinnunen's result can be extended to the case where P = 1.


Author(s):  
John Hawkes

Let Xt be a Lévy process in Rd, d-dimensional euclidean space. That is X is a Markov process whose transition function satisfies


1972 ◽  
Vol 48 ◽  
pp. 129-145
Author(s):  
Ken-Iti Sato

Let Xt(ω)) be a stochastic process with stationary independent increments on the N-dimensional Euclidean space RN, right continuous in t ≧ 0 and starting at the origin. Let C0(RN) be the Banach space of real-valued continuous functions on RN vanishing at infinity with norm . The process induces a transition semigroup of operators Tt on C0(RN) :Ttf(x) = Ef(x + Xt).


1970 ◽  
Vol 13 (1) ◽  
pp. 83-87 ◽  
Author(s):  
K. V. Menon

Let Rm denote a m dimensional Euclidean space. When x ∊ Rm will write x = (x1, x2,..., xm). Let R+m ={x: x ∊ Rm, xi < 0 for all i} and R-m ={x: x ∊ Rm, xi < 0 for all i}. In this paper we consider a class of functions which consists of mappings, Er(K) and Hr(K) of Rm into R which are indexed by K ∊ R+m and K ∊ R-m respectively, and defined at any point α ∊ Rm by1.1


Sign in / Sign up

Export Citation Format

Share Document