Homotopy groups and homotopy equivalence

Author(s):  
V. Vassiliev
1982 ◽  
Vol 34 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Stephen Halperin ◽  
Jean Claude Thomas

Let be two Serre fibrations with same base and fibre in which all the spaces have the homotopy type of simple CW complexes of finite type. We say they are rationally homotopically equivalent if there is a homotopy equivalence between the localizations at Q which covers the identity map of BQ.Such an equivalence implies, of course, an isomorphism of cohomology algebras (over Q) and of rational homotopy groups; on the other hand isomorphisms of these classical algebraic invariants are usually (by far) insufficient to establish the existence of a rational homotopy equivalence.Nonetheless, as we shall show in this note, for certain fibrations rational homotopy equivalence is in fact implied by the existence of an isomorphism of cohomology algebras. While these fibrations are rare inside the class of all fibrations, they do include principal bundles with structure groups a connected Lie group G as well as many associated bundles with fibre G/K.


1992 ◽  
Vol 122 (1-2) ◽  
pp. 127-135 ◽  
Author(s):  
John W. Rutter

SynopsisWe give here an abelian kernel (central) group extension sequence for calculating, for a non-simply-connected space X, the group of pointed self-homotopy-equivalence classes . This group extension sequence gives in terms of , where Xn is the nth stage of a Postnikov decomposition, and, in particular, determines up to extension for non-simplyconnected spaces X having at most two non-trivial homotopy groups in dimensions 1 and n. We give a simple geometric proof that the sequence splits in the case where is the generalised Eilenberg–McLane space corresponding to the action ϕ: π1 → aut πn, and give some information about the class of the extension in the general case.


Author(s):  
R. W. Thomason

In (13), Quillen defines a higher algebraic K-theory by taking homotopy groups of the classifying spaces of certain categories. Certain questions in K-theory then become questions such as when do functors induce a homotopy equivalence of classifying spaces, or when is a square of categories homotopy cartesian? Quillen has given some techniques for answering such questions. F. Waldhausen has extended these ideas in (19), and broadened the range of applications to include geometric topology (20).


2019 ◽  
Vol 150 (6) ◽  
pp. 2982-3000
Author(s):  
Daisuke Kishimoto ◽  
Toshiyuki Miyauchi

AbstractFor certain pairs of Lie groups (G, H) and primes p, Harris showed a relation of the p-localized homotopy groups of G and H. This is reinterpreted as a p-local homotopy equivalence G ≃ (p)H × G/H, and so there is a projection G(p) → H(p). We show how much this projection preserves the higher homotopy associativity.


Author(s):  
J. W. Rutter

SynopsisWe give here a group extension sequence for calculating, for a non-simply-connected space X, the group of self-homotopy-equivalence classes which induce the identity automorphism of the fundamental group, that is the kernel of the representation → aut (π1(X)). This group extension sequence gives in terms of , where Xn is the n-th stage of a Postnikov decomposition. As special cases, we calculate for non-simply-connected spaces having at most two non-trivial homotopy groups, in dimensions 1 and n, as the unit group of a semigroup structure on ; and we calculate up to extension for non-simply-connected spaces having at most three non-trivial homotopy groups. The group is, for nice spaces, isomorphic to the groups and of self-homotopy-equivalence classes of X in the categories top*M and top M, respectively, where X→M = K1(π1(X)) is a top fibration which determines an isomorphism of the fundamental group; and our results are obtained initially in topM.


2006 ◽  
Vol 08 (06) ◽  
pp. 763-821 ◽  
Author(s):  
WEIMIN CHEN

This is the second of a series of papers which is devoted to a comprehensive theory of maps between orbifolds. In this paper, we develop a basic machinery for studying homotopy classes of such maps. It contains two parts: (1) the construction of a set of algebraic invariants — the homotopy groups, and (2) an analog of CW-complex theory. As a corollary of this machinery, the classical Whitehead theorem (which asserts that a weak homotopy equivalence is a homotopy equivalence) is extended to the orbifold category.


Author(s):  
Friedhelm Waldhausen ◽  
Bjørn Jahren ◽  
John Rognes

Since its introduction by the author in the 1970s, the algebraic K-theory of spaces has been recognized as the main tool for studying parametrized phenomena in the theory of manifolds. However, a full proof of the equivalence relating the two areas has not appeared until now. This book presents such a proof, essentially completing the author's program from more than thirty years ago. The main result is a stable parametrized h-cobordism theorem, derived from a homotopy equivalence between a space of PL h-cobordisms on a space X and the classifying space of a category of simple maps of spaces having X as deformation retract. The smooth and topological results then follow by smoothing and triangulation theory. The proof has two main parts. The essence of the first part is a “desingularization,” improving arbitrary finite simplicial sets to polyhedra. The second part compares polyhedra with PL manifolds by a thickening procedure. Many of the techniques and results developed should be useful in other connections.


Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

This chapter examines various ways to construct symplectic manifolds and submanifolds. It begins by studying blowing up and down in both the complex and the symplectic contexts. The next section is devoted to a discussion of fibre connected sums and describes Gompf’s construction of symplectic four-manifolds with arbitrary fundamental group. The chapter also contains an exposition of Gromov’s telescope construction, which shows that for open manifolds the h-principle rules and the inclusion of the space of symplectic forms into the space of nondegenerate 2-forms is a homotopy equivalence. The final section outlines Donaldson’s construction of codimension two symplectic submanifolds and explains the associated decompositions of the ambient manifold.


1983 ◽  
Vol 26 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Yasukuni Furukawa

The complex Stiefel manifoldWn,k, wheren≦k≦1, is a space whose points arek-frames inCn. By using the formula of McCarty [4], we will make the calculations of the Whitehead products in the groups π*(Wn,k). The case of real and quaternionic will be treated by Nomura and Furukawa [7]. The product [[η],j1l] appears as generator of the isotropy group of the identity map of Stiefel manifolds. In this note we use freely the results of the 2-components of the homotopy groups of real and complex Stiefel manifolds such as Paechter [8], Hoo-Mahowald [1], Nomura [5], Sigrist [9] and Nomura-Furukawa [6].


Sign in / Sign up

Export Citation Format

Share Document