Half-dimensional torus actions


2020 ◽  
pp. 1-30
Author(s):  
Alastair Darby ◽  
Shintarô Kuroki ◽  
Jongbaek Song

Abstract We calculate the integral equivariant cohomology, in terms of generators and relations, of locally standard torus orbifolds whose odd degree ordinary cohomology vanishes. We begin by studying GKM-orbifolds, which are more general, before specializing to half-dimensional torus actions.



2002 ◽  
Vol 91 (2) ◽  
pp. 175
Author(s):  
Nobuhiro Honda

We study algebro-geometric properties of certain twistor spaces over $n\boldsymbol{CP}^2$ with two dimensional torus actions, whose existence was proved by Pedersen and Poon. We show that they have a pencil whose general members are non-singular toric surface, and completely determine the structure of the reducible members of the pencil, which are also toric surfaces. In the course of our proof, we describe behaviors of the above pencil under equivariant smoothing. Relation between the weighted dual graphs of the toric surfaces in the pencil and similar invariant of the above torus action on $n\boldsymbol{CP}^2$ is also determined.



2006 ◽  
Vol 116 (3) ◽  
pp. 293-298
Author(s):  
Ali Özkurt ◽  
Doğan Dönmez


2010 ◽  
Vol 17 (2) ◽  
pp. 223-280 ◽  
Author(s):  
Dominic Wright
Keyword(s):  


Author(s):  
Daniel Berend

AbstractLet σ be an ergodic endomorphism of the r–dimensional torus and Π a semigroup generated by two affine transformations lying above σ. We show that the flow defined by Π admits minimal sets of positive Hausdorff dimension and we give necessary and sufficient conditions for this flow to be minimal.



2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Giulio Bonelli ◽  
Fabrizio Del Monte ◽  
Pavlo Gavrylenko ◽  
Alessandro Tanzini

AbstractWe study the relation between class $$\mathcal {S}$$ S theories on punctured tori and isomonodromic deformations of flat SL(N) connections on the two-dimensional torus with punctures. Turning on the self-dual $$\Omega $$ Ω -background corresponds to a deautonomization of the Seiberg–Witten integrable system which implies a specific time dependence in its Hamiltonians. We show that the corresponding $$\tau $$ τ -function is proportional to the dual gauge theory partition function, the proportionality factor being a nontrivial function of the solution of the deautonomized Seiberg–Witten integrable system. This is obtained by mapping the isomonodromic deformation problem to $$W_N$$ W N free fermion correlators on the torus.



2013 ◽  
Vol 65 (1) ◽  
pp. 105-130 ◽  
Author(s):  
Alvaro Liendo ◽  
Hendrik Süss
Keyword(s):  






1999 ◽  
Vol 19 (2) ◽  
pp. 523-534 ◽  
Author(s):  
DAVID MEIRI ◽  
YUVAL PERES

Let $A,B$ be two diagonal endomorphisms of the $d$-dimensional torus with corresponding eigenvalues relatively prime. We show that for any $A$-invariant ergodic measure $\mu$, there exists a projection onto a torus ${\mathbb T}^r$ of dimension $r\ge\dim\mu$, that maps $\mu$-almost every $B$-orbit to a uniformly distributed sequence in ${\mathbb T}^r$. As a corollary we obtain that the Hausdorff dimension of any bi-invariant measure, as well as any closed bi-invariant set, is an integer.



Sign in / Sign up

Export Citation Format

Share Document