scholarly journals Multiparameter perturbation theory of matrices and linear operators

2020 ◽  
Vol 373 (4) ◽  
pp. 2933-2948
Author(s):  
Adam Parusiński ◽  
Guillaume Rond
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro

Abstract This paper generalizes the classical theory of perturbation of eigenvalues up to cover the most general setting where the operator surface 𝔏 : [ a , b ] × [ c , d ] → Φ 0 ⁢ ( U , V ) {\mathfrak{L}:[a,b]\times[c,d]\to\Phi_{0}(U,V)} , ( λ , μ ) ↦ 𝔏 ⁢ ( λ , μ ) {(\lambda,\mu)\mapsto\mathfrak{L}(\lambda,\mu)} , depends continuously on the perturbation parameter, μ, and holomorphically, as well as nonlinearly, on the spectral parameter, λ, where Φ 0 ⁢ ( U , V ) {\Phi_{0}(U,V)} stands for the set of Fredholm operators of index zero between U and V. The main result is a substantial extension of a classical finite-dimensional theorem of T. Kato (see [T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Class. Math., Springer, Berlin, 1995, Chapter 2, Section 5]).


Author(s):  
Temirkhan Aleroev ◽  
Hedi Aleroeva ◽  
Lyudmila Kirianova

In this paper, we give a formula for computing the eigenvalues of the Dirichlet problem for a differential equation of second-order with fractional derivatives in the lower terms. We obtained this formula using the perturbation theory for linear operators. Using this formula we can write out the system of eigenvalues for the problem under consideration.


2017 ◽  
Vol 39 (8) ◽  
pp. 2159-2175
Author(s):  
BENOÎT R. KLOECKNER

Using quantitative perturbation theory for linear operators, we prove a spectral gap for transfer operators of various families of intermittent maps with almost constant potentials (‘high-temperature’ regime). Hölder and bounded $p$-variation potentials are treated, in each case under a suitable assumption on the map, but the method should apply more generally. It is notably proved that for any Pommeau–Manneville map, any potential with Lipschitz constant less than 0.0014 has a transfer operator acting on $\operatorname{Lip}([0,1])$ with a spectral gap; and that for any two-to-one unimodal map, any potential with total variation less than 0.0069 has a transfer operator acting on $\operatorname{BV}([0,1])$ with a spectral gap. We also prove under quite general hypotheses that the classical definition of spectral gap coincides with the formally stronger one used in Giulietti et al [The calculus of thermodynamical formalism. J. Eur. Math. Soc., to appear. Preprint, 2015, arXiv:1508.01297], allowing all results there to be applied under the high-temperature bounds proved here: analyticity of pressure and equilibrium states, central limit theorem, etc.


2002 ◽  
Vol 66 (2) ◽  
pp. 275-289 ◽  
Author(s):  
Teresa Alvarez ◽  
Ronald Cross ◽  
Diane Wilcox

Certain norm related functions of linear operators are considered in the very general setting of linear relations in normed spaces. These are shown to be closely related to the theory of strictly singular, strictly cosingular, F+ and F− linear relations. Applications to perturbation theory follow.


SIAM Review ◽  
1970 ◽  
Vol 12 (1) ◽  
pp. 155-157
Author(s):  
Calvin H. Wilcox

Sign in / Sign up

Export Citation Format

Share Document