Infinite matrices in an analytic space

Author(s):  
M. G. Haplanov
1996 ◽  
Vol 180 (2) ◽  
pp. 402-411 ◽  
Author(s):  
Roy O. Davies ◽  
Michael P. Drazin ◽  
Mark L. Roberts

1983 ◽  
Vol 94 (2) ◽  
pp. 341-350
Author(s):  
R. Hill

AbstractIn the classical theory of plane deformations in isotropic plastic media, the field equations are hyperbolic and the orthogonal families of characteristics are known as Hencky-Prandtl nets. Their distinctive geometry has been given symbolic expression by Collins (1968), in an algebra of infinite matrices associated with canonical series representations of the general solution. This has become the standard technique when investigating boundary-value problems, both analytically and numerically. The basic framework of the algebra is here reorganized and developed. A systematic approach then leads to new identities which are shown to be fundamental in the algebraic hierarchy.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Muhammed Altun

The fine spectra of upper and lower triangular banded matrices were examined by several authors. Here we determine the fine spectra of tridiagonal symmetric infinite matrices and also give the explicit form of the resolvent operator for the sequence spaces , , , and .


2017 ◽  
Vol 5 (1) ◽  
pp. 250-257 ◽  
Author(s):  
María Ivonne Arenas-Herrera ◽  
Luis Verde-Star

Abstract We present a new way to deal with doubly infinite lower Hessenberg matrices based on the representation of the matrices as the sum of their diagonal submatrices. We show that such representation is a simple and useful tool for computation purposes and also to obtain general properties of the matrices related with inversion, similarity, commutativity, and Pincherle derivatives. The diagonal representation allows us to consider the ring of doubly infinite lower Hessenberg matrices over a ring R as a ring of Laurent series in one indeterminate, with coefficients in the ring of R-valued sequences that don’t commute with the indeterminate.


2020 ◽  
pp. 71-88
Author(s):  
Mohammad Mursaleen ◽  
Feyzi Başar
Keyword(s):  

2019 ◽  
Vol 2019 (749) ◽  
pp. 87-132
Author(s):  
Laurent Meersseman

Abstract Kuranishi’s fundamental result (1962) associates to any compact complex manifold {X_{0}} a finite-dimensional analytic space which has to be thought of as a local moduli space of complex structures close to {X_{0}} . In this paper, we give an analogous statement for Levi-flat CR-manifolds fibering properly over the circle by associating to any such {\mathcal{X}_{0}} the loop space of a finite-dimensional analytic space which serves as a local moduli space of CR-structures close to {\mathcal{X}_{0}} . We then develop in this context a Kodaira–Spencer deformation theory making clear the likenesses as well as the differences with the classical case. The article ends with applications and examples.


2021 ◽  
Vol 25 (21) ◽  
pp. 606-643
Author(s):  
Yury Neretin

We classify irreducible unitary representations of the group of all infinite matrices over a p p -adic field ( p ≠ 2 p\ne 2 ) with integer elements equipped with a natural topology. Any irreducible representation passes through a group G L GL of infinite matrices over a residue ring modulo p k p^k . Irreducible representations of the latter group are induced from finite-dimensional representations of certain open subgroups.


10.37236/1703 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Michael Schlosser

We present a new matrix inverse with applications in the theory of bilateral basic hypergeometric series. Our matrix inversion result is directly extracted from an instance of Bailey's very-well-poised ${}_6\psi_6$ summation theorem, and involves two infinite matrices which are not lower-triangular. We combine our bilateral matrix inverse with known basic hypergeometric summation theorems to derive, via inverse relations, several new identities for bilateral basic hypergeometric series.


Sign in / Sign up

Export Citation Format

Share Document