scholarly journals Phosphatidylinositol 3,4,5-trisphosphate Localization in Recycling Endosomes Is Necessary for AP-1B–dependent Sorting in Polarized Epithelial Cells

2010 ◽  
Vol 21 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Ian C. Fields ◽  
Shelby M. King ◽  
Elina Shteyn ◽  
Richard S. Kang ◽  
Heike Fölsch

Polarized epithelial cells coexpress two almost identical AP-1 clathrin adaptor complexes: the ubiquitously expressed AP-1A and the epithelial cell–specific AP-1B. The only difference between the two complexes is the incorporation of the respective medium subunits μ1A or μ1B, which are responsible for the different functions of AP-1A and AP-1B in TGN to endosome or endosome to basolateral membrane targeting, respectively. Here we demonstrate that the C-terminus of μ1B is important for AP-1B recruitment onto recycling endosomes. We define a patch of three amino acid residues in μ1B that are necessary for recruitment of AP-1B onto recycling endosomes containing phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3]. We found this lipid enriched in recycling endosomes of epithelial cells only when AP-1B is expressed. Interfering with PI(3,4,5)P3 formation leads to displacement of AP-1B from recycling endosomes and missorting of AP-1B–dependent cargo to the apical plasma membrane. In conclusion, PI(3,4,5)P3 formation in recycling endosomes is essential for AP-1B function.

Author(s):  
Greg Martin ◽  
Rohit Cariappa ◽  
Ann L. Hubbard

The plasma membrane of polarized epithelial cells is composed of two structurally and functionally distinct domains -- the apical and basolateral -- that also differ in molecular composition. The routes followed by integral membrane proteins from their site of synthesis to their site of function varies between different kinds of epithelia. Madin-Darby canine kidney (MDCK) cells deliver plasma membrane proteins directly to the correct domain, while polarized hepatocytes deliver all newly synthesized plasma membrane proteins initially to the basolateral membrane, then retrieve and redirect the apical membrane proteins. We are studying the targeting signals and delivery routes of DPPIV, a single transmembrane protein whose destination is the apical domain in polarized epithelial cells.DPPIV transfected into MDCK cells is delivered to the basolateral plasma membrane after long (13hr) treatment with Brefeldin A (BFA). After BFA’s removal these molecules are retrieved from the basolateral membrane and transcytosed to the apical plasma membrane. This protocol provides a useful model for studies of the indirect route of protein sorting in polarized epithelial cells, since DPPIV at the basolateral surface can be labeled with specific antibody and then subsequently followed in living cells.


2011 ◽  
Vol 194 (6) ◽  
pp. 873-887 ◽  
Author(s):  
Elina Shteyn ◽  
Lucy Pigati ◽  
Heike Fölsch

The epithelial cell–specific clathrin adaptor complex AP-1B facilitates the sorting of various transmembrane proteins from recycling endosomes (REs) to the basolateral plasma membrane. Despite AP-1B’s clear importance in polarized epithelial cells, we still do not fully understand how AP-1B orchestrates basolateral targeting. Here we identify the ADP-ribosylation factor 6 (Arf6) as an important regulator of AP-1B. We show that activated Arf6 pulled down AP-1B in vitro. Furthermore, interfering with Arf6 function through overexpression of dominant-active Arf6Q67L or dominant-negative Arf6D125N, as well as depletion of Arf6 with short hairpin RNA (shRNA), led to apical missorting of AP-1B–dependent cargos. In agreement with these data, we found that Arf6 colocalized with AP-1B and transferrin receptor (TfnR) in REs. In addition, we observed specific recruitment of AP-1B into Arf6-induced membrane ruffles in nonpolarized cells. We conclude that activated Arf6 directs membrane recruitment of AP-1B, thus regulating AP-1B’s functions in polarized epithelial cells.


2004 ◽  
Vol 286 (2) ◽  
pp. F363-F369 ◽  
Author(s):  
Sertac N. Kip ◽  
Emanuel E. Strehler

Plasma membrane Ca2+-ATPases (PMCAs) are a ubiquitous system for the expulsion of Ca2+ from eukaryotic cells. In tight monolayers of polarized Madin-Darby canine kidney (MDCK) cells representing a distal kidney tubule model, PMCAs are responsible for about one-third of the vectorial Ca2+ transport under resting conditions, with the remainder being provided by the Na+/Ca2+ exchanger. Vitamin D3 (VitD) is known to increase PMCA expression and activity in Ca2+-transporting tissues such as the intestine, as well as in osteoblasts and Madin-Darby bovine kidney epithelial cells. We found that VitD upregulated the expression of the PMCAs (mainly PMCA4b) in MDCK cell lysates at the RNA and protein level in a time- and dose-dependent manner. Interestingly, VitD caused a decrease of the PMCAs in the apical plasma membrane fraction and a concomitant increase of the pumps in the basolateral membrane. Functional studies demonstrated that transcellular 45Ca2+ flux from the apical-to-basolateral compartment was significantly enhanced by VitD. These findings demonstrate that VitD is a positive regulator of the PMCAs in MDCK epithelial cells. The correlation of decreased apical/increased basolateral expression of the PMCAs with an increase in transcellular Ca2+ flux from the apical (urine) toward the basolateral (blood) compartment indicates the physiological relevance of VitD function in kidney tubular Ca2+ reabsorption.


1998 ◽  
Vol 9 (3) ◽  
pp. 685-699 ◽  
Author(s):  
Kent K. Grindstaff ◽  
Robert L. Bacallao ◽  
W. James Nelson

In nonpolarized epithelial cells, microtubules originate from a broad perinuclear region coincident with the distribution of the Golgi complex and extend outward to the cell periphery (perinuclear [PN] organization). During development of epithelial cell polarity, microtubules reorganize to form long cortical filaments parallel to the lateral membrane, a meshwork of randomly oriented short filaments beneath the apical membrane, and short filaments at the base of the cell; the Golgi becomes localized above the nucleus in the subapical membrane cytoplasm (apiconuclear [AN] organization). The AN-type organization of microtubules is thought to be specialized in polarized epithelial cells to facilitate vesicle trafficking between the trans-Golgi Network (TGN) and the plasma membrane. We describe two clones of MDCK cells, which have different microtubule distributions: clone II/G cells, which gradually reorganize a PN-type distribution of microtubules and the Golgi complex to an AN-type during development of polarity, and clone II/J cells which maintain a PN-type organization. Both cell clones, however, exhibit identical steady-state polarity of apical and basolateral proteins. During development of cell surface polarity, both clones rapidly establish direct targeting pathways for newly synthesized gp80 and gp135/170, and E-cadherin between the TGN and apical and basolateral membrane, respectively; this occurs before development of the AN-type microtubule/Golgi organization in clone II/G cells. Exposure of both clone II/G and II/J cells to low temperature and nocodazole disrupts >99% of microtubules, resulting in: 1) 25–50% decrease in delivery of newly synthesized gp135/170 and E-cadherin to the apical and basolateral membrane, respectively, in both clone II/G and II/J cells, but with little or no missorting to the opposite membrane domain during all stages of polarity development; 2) ∼40% decrease in delivery of newly synthesized gp80 to the apical membrane with significant missorting to the basolateral membrane in newly established cultures of clone II/G and II/J cells; and 3) variable and nonspecific delivery of newly synthesized gp80 to both membrane domains in fully polarized cultures. These results define several classes of proteins that differ in their dependence on intact microtubules for efficient and specific targeting between the Golgi and plasma membrane domains.


2008 ◽  
Vol 182 (5) ◽  
pp. 845-853 ◽  
Author(s):  
Rita L. Nokes ◽  
Ian C. Fields ◽  
Ruth N. Collins ◽  
Heike Fölsch

To maintain polarity, epithelial cells continuously sort transmembrane proteins to the apical or basolateral membrane domains during biosynthetic delivery or after internalization. During biosynthetic delivery, some cargo proteins move from the trans-Golgi network (TGN) into recycling endosomes (RE) before being delivered to the plasma membrane. However, proteins that regulate this transport step remained elusive. In this study, we show that Rab13 partially colocalizes with TGN38 at the TGN and transferrin receptors in RE. Knockdown of Rab13 with short hairpin RNA in human bronchial epithelial cells or overexpression of dominant-active or dominant-negative alleles of Rab13 in Madin-Darby canine kidney cells disrupts TGN38/46 localization at the TGN. Moreover, overexpression of Rab13 mutant alleles inhibits surface arrival of proteins that move through RE during biosynthetic delivery (vesicular stomatitis virus glycoprotein [VSVG], A-VSVG, and LDLR-CT27). Importantly, proteins using a direct route from the TGN to the plasma membrane are not affected. Thus, Rab13 appears to regulate membrane trafficking between TGN and RE.


2009 ◽  
Vol 186 (2) ◽  
pp. 269-282 ◽  
Author(s):  
Glen A. Farr ◽  
Michael Hull ◽  
Ira Mellman ◽  
Michael J. Caplan

Newly synthesized apical and basolateral membrane proteins are sorted from one another in polarized epithelial cells. The trans-Golgi network participates in this sorting process, but some basolateral proteins travel from the Golgi to recycling endosomes (REs) before their surface delivery. Using a novel system for pulse–chase microscopy, we have visualized the postsynthetic route pursued by a newly synthesized cohort of Na,K-ATPase. We find that the basolateral delivery of newly synthesized Na,K-ATPase occurs via a pathway distinct from that pursued by the vesicular stomatitis virus G protein (VSV-G). Na,K-ATPase surface delivery occurs at a faster rate than that observed for VSV-G. The Na,K-ATPase does not pass through the RE compartment en route to the plasma membrane, and Na,K-ATPase trafficking is not regulated by the same small GTPases as other basolateral proteins. Finally, Na,K-ATPase and VSV-G travel in separate post-Golgi transport intermediates, demonstrating directly that multiple routes exist for transport from the Golgi to the basolateral membrane in polarized epithelial cells.


1988 ◽  
Vol 107 (5) ◽  
pp. 1707-1715 ◽  
Author(s):  
J E Bergmann ◽  
P J Fusco

Using monoclonal antibodies and indirect immunofluorescence microscopy, we investigated the distribution of the M protein in situ in vesicular stomatitis virus-(VSV) infected MDCK cells. M protein was observed free in the cytoplasm and associated with the plasma membrane. Using the ts045 mutant of VSV to uncouple the synthesis and transport of the VSV G protein we demonstrated that this distribution was not related to the presence of G protein on the cell surface. Sections of epon-embedded infected cells labeled with antibody to the M protein and processed for indirect horseradish peroxidase immunocytochemistry revealed that the M protein was associated specifically with the basolateral plasma membrane. The G and M proteins of VSV have therefore evolved features which bring them independently to the basolateral membrane of polarized epithelial cells and allow virus to bud specifically from that membrane.


2012 ◽  
Vol 303 (5) ◽  
pp. C554-C566 ◽  
Author(s):  
Ensaf Y. Almomani ◽  
Jennifer C. King ◽  
Janjuree Netsawang ◽  
Pa-Thai Yenchitsomanus ◽  
Prida Malasit ◽  
...  

Distal renal tubular acidosis (dRTA) can be caused by mutations in the gene encoding the anion exchanger 1 (AE1) and is characterized by defective urinary acidification, metabolic acidosis, and renal stones. AE1 is expressed at the basolateral membrane of type A intercalated cells in the renal cortical collecting duct (kAE1). Two dRTA mutations result in the carboxyl-terminal truncation of kAE1; in one case, the protein trafficked in a nonpolarized way in epithelial cells. A recent yeast two-hybrid assay showed that the carboxyl-terminal cytosolic domain of AE1 interacts with adaptor protein complex 1 (AP-1A) subunit μ1A (mu-1A; Sawasdee N, Junking M, Ngaojanlar P, Sukomon N, Ungsupravate D, Limjindaporn T, Akkarapatumwong V, Noisakran S, Yenchitsomanus PT. Biochem Biophys Res Commun 401: 85–91, 2010). Here, we show the interaction between kAE1 and mu-1A and B in vitro by reciprocal coimmunoprecipitation in epithelial cells and in vivo by coimmunoprecipitation from mouse kidney extract. When endogenous mu-1A (and to a lesser extent mu-1B) was reduced, kAE1 protein was unable to traffic to the plasma membrane and was rapidly degraded via a lysosomal pathway. Expression of either small interfering RNA-resistant mu-1A or mu-1B stabilized kAE1 in these cells. We also show that newly synthesized kAE1 does not traffic through recycling endosomes to the plasma membrane, suggesting that AP-1B, located in recycling endosomes, is not primarily involved in trafficking of newly synthesized kAE1 when AP-1A is present in the cells. Our data demonstrate that AP-1A regulates processing of the basolateral, polytopic membrane protein kAE1 to the cell surface and that both AP-1A and B adaptor complexes are required for normal kAE1 trafficking.


2004 ◽  
Vol 167 (3) ◽  
pp. 531-543 ◽  
Author(s):  
Agnes Lee Ang ◽  
Tomohiko Taguchi ◽  
Stephen Francis ◽  
Heike Fölsch ◽  
Lindsay J. Murrells ◽  
...  

The AP-1B clathrin adaptor complex is responsible for the polarized transport of many basolateral membrane proteins in epithelial cells. Localization of AP-1B to recycling endosomes (REs) along with other components (exocyst subunits and Rab8) involved in AP-1B–dependent transport suggested that RE might be an intermediate between the Golgi and the plasma membrane. Although the involvement of endosomes in the secretory pathway has long been suspected, we now present direct evidence using four independent methods that REs play a role in basolateral transport in MDCK cells. Newly synthesized AP-1B–dependent cargo, vesicular stomatitis virus glycoprotein G (VSV-G), was found by video microscopy, immunoelectron microscopy, and cell fractionation to enter transferrin-positive REs within a few minutes after exit from the trans-Golgi network. Although transient, RE entry appears essential because enzymatic inactivation of REs blocked VSV-G delivery to the cell surface. Because an apically targeted VSV-G mutant behaved similarly, these results suggest that REs not only serve as an intermediate but also as a common site for polarized sorting on the endocytic and secretory pathways.


Sign in / Sign up

Export Citation Format

Share Document