scholarly journals MICAL-like1 mediates epidermal growth factor receptor endocytosis

2011 ◽  
Vol 22 (18) ◽  
pp. 3431-3441 ◽  
Author(s):  
Nancy Abou-Zeid ◽  
Rudy Pandjaitan ◽  
Lucie Sengmanivong ◽  
Violaine David ◽  
Gwenaelle Le Pavec ◽  
...  

Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein–Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways.

2008 ◽  
Vol 19 (11) ◽  
pp. 4909-4917 ◽  
Author(s):  
Ethan R. Block ◽  
Jes K. Klarlund

Wounding epithelia induces activation of the epidermal growth factor receptor (EGFR), which is absolutely required for induction of motility. ATP is released from cells after wounding; it binds to purinergic receptors on the cell surface, and the EGFR is subsequently activated. Exogenous ATP activates phospholipase D, and we show here that ATP activates the EGFR through the phospholipase D2 isoform. The EGFR is activated in cells far (>0.3 cm) from wounds, which is mediated by diffusion of extracellular ATP because activation at a distance from wounds is abrogated by eliminating ATP in the medium with apyrase. In sharp contrast, activation of the EGFR near wounds is not sensitive to apyrase. Time-lapse microscopy revealed that cells exhibit increased motilities near edges of wounds; this increase in motility is not sensitive to apyrase, and apyrase does not detectably inhibit healing of wounds in epithelial sheets. This novel ATP/PLD2-independent pathway activates the EGFR by a transactivation process through ligand release, and it involves signaling by a member of the Src family of kinases. We conclude that wounding activates two distinct signaling pathways that induce EGFR activation and promote healing of wounds in epithelial cells. One pathway signals at a distance from wounds through release of ATP, and another pathway acts locally and is independent on ATP signaling.


2020 ◽  
Vol 295 (38) ◽  
pp. 13353-13362 ◽  
Author(s):  
Patrick O. Byrne ◽  
Kalina Hristova ◽  
Daniel J. Leahy

The human epidermal growth factor receptor (EGFR/ERBB1) is a receptor tyrosine kinase (RTK) that forms activated oligomers in response to ligand. Much evidence indicates that EGFR/ERBB1 also forms oligomers in the absence of ligand, but the structure and physiological role of these ligand-independent oligomers remain unclear. To examine these features, we use fluorescence microscopy to measure the oligomer stability and FRET efficiency for homo- and hetero-oligomers of fluorescent protein-labeled forms of EGFR and its paralog, human epidermal growth factor receptor 2 (HER2/ERBB2) in vesicles derived from mammalian cell membranes. We observe that both receptors form ligand-independent oligomers at physiological plasma membrane concentrations. Mutations introduced in the kinase region at the active state asymmetric kinase dimer interface do not affect the stability of ligand-independent EGFR oligomers. These results indicate that ligand-independent EGFR oligomers form using interactions that are distinct from the EGFR active state.


Sign in / Sign up

Export Citation Format

Share Document