scholarly journals The Drosophila melanogaster Rab GAP RN-tre cross-talks with the Rho1 signaling pathway to regulate nonmuscle myosin II localization and function

2020 ◽  
Vol 31 (21) ◽  
pp. 2379-2397
Author(s):  
Amy Platenkamp ◽  
Elizabeth Detmar ◽  
Liz Sepulveda ◽  
Anna Ritz ◽  
Stephen L. Rogers ◽  
...  

The Rab GAP RN-tre regulates the activity, coalescence, and function of nonmuscle myosin II in Drosophila melanogaster cells through cross-talk with the Rho1 signaling pathway. This regulation is partially independent of RN-tre’s GAP activity.

2018 ◽  
Author(s):  
Zhenghong Li ◽  
Yun Feng ◽  
Ruling Zhang ◽  
Peiwen Wang ◽  
Lungen Lu ◽  
...  

AbstractMigration and contraction of activated hepatic stellate cell (HSC) are essential factors for cirrhosis formation and development. It has been demonstrated that blebbistatin, a nonmuscle myosin II (NMMII) inhibitor, can inhibit the migration and contraction of HSC, whereas the main cell signaling pathway is still unknown. Mammalian target of rapamycin (mTOR) signaling pathway may be involved in many cells migration and contraction, whether NMMII and mTOR have any crosslinks draw our attention. In the currently study, we used LV-RNAi to specifically attenuate mTOR and NMMII in rat HSC. We aimed to examine the effect of mTOR LV-RNAi on the migration and contraction of HSC and explore the crosslink between mTOR cell signal and NMMII. Using real-time PCR and western blot, we found that mTOR and the downstream factors including S6K and 4EBP1 all up-regulated with the activation of HSC, mTOR and NMMII LV-RNAi was transfected into activated HSC using lipofectamine 2000. The levels of mRNA and proteins were also examined using real-time PCR and western blot respectively. The expression of mTOR can be down-regulated by NMMII LV-RNAi significantly, as well as the expression of S6K, 4EBP1, α-SMA and collagen I, but the level of AKT was up-regulated. Then we used Transwell system and collagen lattices to examine the NMMII and mTOR LV-RNAi efficiency on HSC migration and contraction, as we hypothesized, both of the LV-RNAi could inhibit HSC migration and contraction significantly. These results indicated that nonmuscle myosin II shRNA inhibit migration and contraction in rat hepatic stellate cells through the regulation of mTOR/S6K/4EBP1 signaling pathway


Sign in / Sign up

Export Citation Format

Share Document