Neural Mechanisms and the Development of Individual Differences in Behavioral Inhibition

Author(s):  
Takahashi Lorey K. ◽  
Kalin Ned H.
2018 ◽  
pp. 59-90 ◽  
Author(s):  
Johanna M. Jarcho ◽  
Amanda E. Guyer

2020 ◽  
Author(s):  
Charlotte Ashton ◽  
André Gouws ◽  
Marcus Glennon ◽  
THEODORE ZANTO ◽  
Steve Tipper ◽  
...  

Abstract Our ability to hold information in mind for a short time (working memory) is separately predicted by our ability to ignore two types of distraction: distraction that occurs while we put information into working memory (encoding) and distraction that occurs while we maintain already encoded information within working memory. This suggests that ignoring these different types of distraction involves distinct mechanisms which separately limit performance. Here we used fMRI to measure category-sensitive cortical activity and probe these mechanisms. The results reveal specific neural mechanisms by which relevant information is remembered and irrelevant information is ignored, which contribute to intra-individual differences in WM performance.


NeuroImage ◽  
2017 ◽  
Vol 153 ◽  
pp. 198-210 ◽  
Author(s):  
Erik de Water ◽  
Gabry W. Mies ◽  
Bernd Figner ◽  
Yuliya Yoncheva ◽  
Wouter van den Bos ◽  
...  

2017 ◽  
Vol 26 (4) ◽  
pp. 335-345 ◽  
Author(s):  
Takehiro Minamoto ◽  
Hiroyuki Tsubomi ◽  
Naoyuki Osaka

Working memory capacity (WMC) indicates an individual’s capability of executive attentional control, which is thought to be critical for general fluid intelligence. Individual variability in WMC has been attributed to the function of the lateral prefrontal cortex (lPFC); however, it is still less clear how the lPFC contributes to individual differences in WMC. Referring to functional neuroimaging studies, we consider three possible neural mechanisms. First, greater task-related activity of the lPFC predicts higher WMC across tasks. Second, a specific task-related functional connectivity also predicts higher WMC. The lPFC consistently forms a part of the connectivity while the coupled region varies depending on tasks. Thus, WMC is reflected by not a fixed but flexible connectivity regulated by the lPFC. Third, distinctive intrinsic connectivity even during resting state is also responsible for individual differences in WMC, with the lPFC seated at a critical hub within the network. These three neural mechanisms differentially contribute to WMC, and therefore, complementarily explain individual differences in WMC.


2020 ◽  
Vol 14 ◽  
Author(s):  
Liu-Fang Zhou ◽  
Ming Meng

Abstract People tend to see faces from non-face objects or meaningless patterns. Such illusory face perception is called face pareidolia. Previous studies have revealed an interesting fact that there are huge individual differences in face pareidolia experience among the population. Here, we review previous findings on individual differences in face pareidolia experience from four categories: sex differences, developmental factors, personality traits and neurodevelopmental factors. We further discuss underlying cognitive or neural mechanisms to explain why some perceive the objects as faces while others do not. The individual differences in face pareidolia could not only offer scientific insights on how the brain works to process face information, but also suggest potential clinical applications.


Sign in / Sign up

Export Citation Format

Share Document