From Plows, Horses, and Harnesses to Precision Technologies in the North American Great Plains

Author(s):  
David E. Clay ◽  
Sharon A. Clay ◽  
Thomas DeSutter ◽  
Cheryl Reese

Since the discovery that food security could be improved by pushing seeds into the soil and later harvesting a desirable crop, agriculture and agronomy have gone through cycles of discovery, implementation, and innovation. Discoveries have produced predicted and unpredicted impacts on the production and consumption of locally produced foods. Changes in technology, such as the development of the self-cleaning steel plow in the 18th century, provided a critical tool needed to cultivate and seed annual crops in the Great Plains of North America. However, plowing the Great Plains would not have been possible without the domestication of plants and animals and the discovery of the yoke and harness. Associated with plowing the prairies were extensive soil nutrient mining, a rapid loss of soil carbon, and increased wind and water erosion. More recently, the development of genetically modified organisms (GMOs) and no-tillage planters has contributed to increased adoption of conservation tillage, which is less damaging to the soil. In the future, the ultimate impact of climate change on agronomic practices in the North American Great Plains is unknown. However, projected increasing temperatures and decreased rainfall in the southern Great Plains (SGP) will likely reduce agricultural productivity. Different results are likely in the northern Great Plains (NGP) where higher temperatures can lead to increased agricultural intensification, the conversion of grassland to cropland, increased wildlife fragmentation, and increased soil erosion. Precision farming, conservation, cover crops, and the creation of plants better designed to their local environment can help mitigate these effects. However, changing practices require that farmers and their advisers understand the limitations of the soils, plants, and environment, and their production systems. Failure to implement appropriate management practices can result in a rapid decline in soil productivity, diminished water quality, and reduced wildlife habitat.

2008 ◽  
Vol 21 (11) ◽  
pp. 2466-2483 ◽  
Author(s):  
Nicholas P. Klingaman ◽  
Brian Hanson ◽  
Daniel J. Leathers

Abstract Anomalies in Siberian snow cover have been shown to affect Eurasian winter climate through the North Atlantic Oscillation (NAO). The existence of a teleconnection between North American snow cover and the NAO is far less certain, particularly for limited, regional snow cover anomalies. Using three ensembles of the Community Atmosphere Model, version 2 (CAM2), the authors examined teleconnections between persistent, forced snow cover in the northern Great Plains of the United States and western Eurasian winters. One ensemble allowed the model to freely determine global snow cover, while the other two forced a 72-cm snowpack centered over Nebraska. Of the forced ensembles, the “early-season” (“late season”) simulations initiated the snowpack on 1 November (1 January). The additional snow cover generated lower (higher) sea level pressures and geopotential heights over Iceland (the Azores) and warmer (cooler) temperatures over northern and western (eastern and southeastern) Europe, which suggests the positive NAO phase. Differences between the free-snow-cover and early-season ensembles were never significant until January, which implied either that the atmospheric response required a long lag or that the late-winter atmosphere was particularly sensitive to Great Plains snow. The authors rejected the former hypothesis and supported the latter by noting similarities between the early- and late-season ensembles in late winter for European 2-m temperatures, transatlantic circulation, and an NAO index. Therefore, a regional North American snow cover anomaly in an area of high inter- and intra-annual snow cover variability can show a stronger teleconnection to European winter climate than previously reported for broader snow cover anomalies. In particular, anomalous late-season snow in the Great Plains may shift the NAO toward the positive phase.


Weed Science ◽  
2018 ◽  
Vol 67 (1) ◽  
pp. 4-15 ◽  
Author(s):  
Vipan Kumar ◽  
Prashant Jha ◽  
Mithila Jugulam ◽  
Ramawatar Yadav ◽  
Phillip W. Stahlman

AbstractKochia [Bassia scoparia(L.) A. J. Scott] is a problematic annual broadleaf weed species in the North American Great Plains.Bassia scopariainherits unique biological characteristics that contribute to its propensity to evolve herbicide resistance. Evolution of glyphosate resistance inB. scopariahas become a serious threat to the major cropping systems and soil conservation practices in the region.Bassia scopariapopulations with resistance to four different herbicide sites of action are a concern for growers. The widespread occurrence of multiple herbicide–resistant (HR)B. scopariaacross the North American Great Plains has renewed research efforts to devise integrated weed management strategies beyond herbicide use. In this review, we aim to compile and document the growing body of literature on HRB. scopariawith emphasis on herbicide-resistance evolutionary dynamics, distribution, mechanisms of evolved resistance, agronomic impacts, and current/future weed management technologies. We focused on ecologically based, non-herbicidal strategies such as diverse crop rotations comprising winter cereals and perennial forages, enhanced crop competition, cover crops, harvest weed seed control (HWSC), and tillage to manage HRB. scopariaseedbanks. Remote sensing using hyperspectral imaging and other sensor-based technologies would be valuable for early detection and rapid response and site-specific herbicide resistance management. We propose research priorities based on an improved understanding of the biology, genetic diversity, and plasticity of this weed that will aid in preserving existing herbicide resources and designing sustainable, integrated HRB. scopariamitigation plans.


2021 ◽  
Author(s):  
Augustine K. Obour ◽  
Logan M. Simon ◽  
Johnathon D. Holman ◽  
Patrick M. Carr ◽  
Meagan Schipanski ◽  
...  

2014 ◽  
Vol 7 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Carolyn A. Gaudet ◽  
Christopher M. Somers

Shoreline development and boating on lakes of the northern Great Plains of North America have increased due to recent economic prosperity. Few studies have examined the general characteristics of habitats used by foraging waterbirds and boats to determine levels of overlap. To address this issue, we conducted point count surveys of American White Pelicans (Pelecanus erythrorhynchos) and boats on two important recreational lakes in southern Saskatchewan, Canada. The majority of pelicans and boats detected used near-shore areas of the lakes, identifying the importance of shallow water habitats and providing evidence of significant overlap. The location of pelicans relative to the shore did not change in the presence of boats, and there was no significant relationship between boat numbers and pelican numbers. These analyses suggest that pelicans did not make major changes to their habitat use on the lakes as a result of boating activity. When pelicans and boats were present simultaneously at point count locations, pelicans appeared to avoid boats on one lake, but showed no detectable avoidance behavior on the other lake. The importance of interactions between recreational boating and foraging pelicans is currently unclear. Set-back distances to protect foraging pelicans from boating activity do not appear necessary based on our analyses.


Author(s):  
M.R. Miller ◽  
P.L. BROWN ◽  
J.J. DONOVAN ◽  
R.N. BERGATINO ◽  
J.L. SONDEREGGER ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 22 ◽  
Author(s):  
Hailey Wilmer ◽  
Lauren Porensky ◽  
María Fernández-Giménez ◽  
Justin Derner ◽  
David Augustine ◽  
...  

In the North American Great Plains, multigenerational ranches and grassland biodiversity are threatened by dynamic and uncertain climatic, economic, and land use processes. Working apart, agricultural and conservation communities face doubtful prospects of reaching their individual goals of sustainability. Rangeland research could serve a convening platform, but experimental studies seldom involve local manager communities. The Collaborative Adaptive Rangeland Management (CARM) project, however, has undertaken a ten-year, ranch-level, participatory research effort to explore how community-engaged research can increase our understanding of conservation and ranching goals. Using ethnographic data and the nature-culture concept—which recognizes the inseparability of ecological relationships that are shaped by both biological and social processes—we examine the CARM team’s process of revising their management objectives (2016–2018). In CARM’s early days, the team established locally-relevant multifunctional goals and objectives. As team members’ understanding of the ecosystem improved, they revised objectives using more spatially, temporally and ecologically specific information. During the revision process, they challenged conventional ecological theories and grappled with barriers to success outside of their control. The emerging CARM nature-culture, based on a sense of place and grounded in hope, provides insights into effective community-engaged research to enhance rangeland livelihood and conservation outcomes.


Sign in / Sign up

Export Citation Format

Share Document