CENOZOIC SEDIMENT PROVENANCE IN THE NORTHERN GREAT PLAINS CORRESPONDS TO FOUR EPISODES OF TECTONIC AND MAGMATIC EVENTS IN THE CENTRAL NORTH AMERICAN CORDILLERA

2019 ◽  
Author(s):  
Lin Li ◽  
◽  
Majie Fan
Author(s):  
Julia I. Corradino ◽  
Alex Pullen ◽  
Andrew L. Leier ◽  
David L. Barbeau Jr. ◽  
Howie D. Scher ◽  
...  

The Bell River hypothesis proposes that an ancestral, transcontinental river occupied much of northern North America during the Cenozoic Era, transporting water and sediment from the North American Cordillera to the Saglek Basin on the eastern margin of the Labrador Sea. To explore this hypothesis and reconstruct Cenozoic North American drainage patterns, we analyzed detrital zircon grains from the Oligocene−Miocene Mokami and Saglek formations of the Saglek Basin and Oligocene−Miocene fluvial conglomerates in the Great Plains of western Canada. U-Pb detrital zircon age populations in the Mokami and Saglek formations include clusters at <250 Ma, 950−1250 Ma, 1600−2000 Ma, and 2400−3200 Ma. Detrital zircons with ages of <250 Ma were derived from the North American Cordillera, supporting the transcontinental Bell River hypothesis. Oligocene−Miocene fluvial strata in western Canada contain detrital zircon age populations similar to those in the Saglek Basin and are interpreted to represent the western headwaters of the ancient Bell River drainage. Strontium-isotope ratios of marine shell fragments from the Mokami and Saglek formations yielded ages between 25.63 and 18.08 Ma. The same shells have εNd values of −10.2 to −12.0 (average = −11.2), which are consistent with values of Paleozoic strata in western North America but are more radiogenic than the modern Labrador Current, Labrador Sea Water, and North Atlantic Deep Water values (εNd ∼−12 to −25). As a freshwater source, the existence and termination of the Bell River may have been important for Labrador Sea circulation, stratification, and chemistry.


2012 ◽  
Vol 25 (19) ◽  
pp. 6666-6683 ◽  
Author(s):  
Scott J. Weaver ◽  
Stephen Baxter ◽  
Arun Kumar

Abstract Variability of springtime tornadic activity over the United States is assessed through the connectivity of preferred modes of North American low-level jet (NALLJ) variability to the local thermodynamic environment and remote SST variations. The link between regional tornado activity and NALLJ variability as diagnosed from a consistent reanalysis system (i.e., NCEP–NCAR) serves as dynamical corroboration in light of the inhomogeneous tornado database. The analysis reveals a multidecadal variation in the strength of the NALLJ–tornado connection, highlighted by tornado activity in the southern Great Plains region nearly doubling its correlation with NALLJ principal component 1 (PC 1) in recent decades. Locally, this is a result of a southward shift of NALLJ variability modes during the recent period. Motivated by these epochal shifts in NALLJ activity, a comparison of the early (1950–78) and late (1979–2010) tornado and NALLJ SST linkages indicates an Atlantic decadal SST variability influence during the early epoch, with Pacific decadal variability thereafter, highlighting the remote SST influence on the shifts in geographic placement and strength of NALLJ variability. The remote SST variability linkages further reveal that the observed global-scale SST trend pattern over the last 61 years may be contributing to a shift toward weaker tornadoes during spring in the northern Great Plains region. Tornado activity over the southeast region of the United States shows no such relationship to the SST trend pattern during spring, an immunity that is unexpected if spurious trends in the tornado database were influencing the SST linkage.


Author(s):  
David E. Clay ◽  
Sharon A. Clay ◽  
Thomas DeSutter ◽  
Cheryl Reese

Since the discovery that food security could be improved by pushing seeds into the soil and later harvesting a desirable crop, agriculture and agronomy have gone through cycles of discovery, implementation, and innovation. Discoveries have produced predicted and unpredicted impacts on the production and consumption of locally produced foods. Changes in technology, such as the development of the self-cleaning steel plow in the 18th century, provided a critical tool needed to cultivate and seed annual crops in the Great Plains of North America. However, plowing the Great Plains would not have been possible without the domestication of plants and animals and the discovery of the yoke and harness. Associated with plowing the prairies were extensive soil nutrient mining, a rapid loss of soil carbon, and increased wind and water erosion. More recently, the development of genetically modified organisms (GMOs) and no-tillage planters has contributed to increased adoption of conservation tillage, which is less damaging to the soil. In the future, the ultimate impact of climate change on agronomic practices in the North American Great Plains is unknown. However, projected increasing temperatures and decreased rainfall in the southern Great Plains (SGP) will likely reduce agricultural productivity. Different results are likely in the northern Great Plains (NGP) where higher temperatures can lead to increased agricultural intensification, the conversion of grassland to cropland, increased wildlife fragmentation, and increased soil erosion. Precision farming, conservation, cover crops, and the creation of plants better designed to their local environment can help mitigate these effects. However, changing practices require that farmers and their advisers understand the limitations of the soils, plants, and environment, and their production systems. Failure to implement appropriate management practices can result in a rapid decline in soil productivity, diminished water quality, and reduced wildlife habitat.


2008 ◽  
Vol 21 (11) ◽  
pp. 2466-2483 ◽  
Author(s):  
Nicholas P. Klingaman ◽  
Brian Hanson ◽  
Daniel J. Leathers

Abstract Anomalies in Siberian snow cover have been shown to affect Eurasian winter climate through the North Atlantic Oscillation (NAO). The existence of a teleconnection between North American snow cover and the NAO is far less certain, particularly for limited, regional snow cover anomalies. Using three ensembles of the Community Atmosphere Model, version 2 (CAM2), the authors examined teleconnections between persistent, forced snow cover in the northern Great Plains of the United States and western Eurasian winters. One ensemble allowed the model to freely determine global snow cover, while the other two forced a 72-cm snowpack centered over Nebraska. Of the forced ensembles, the “early-season” (“late season”) simulations initiated the snowpack on 1 November (1 January). The additional snow cover generated lower (higher) sea level pressures and geopotential heights over Iceland (the Azores) and warmer (cooler) temperatures over northern and western (eastern and southeastern) Europe, which suggests the positive NAO phase. Differences between the free-snow-cover and early-season ensembles were never significant until January, which implied either that the atmospheric response required a long lag or that the late-winter atmosphere was particularly sensitive to Great Plains snow. The authors rejected the former hypothesis and supported the latter by noting similarities between the early- and late-season ensembles in late winter for European 2-m temperatures, transatlantic circulation, and an NAO index. Therefore, a regional North American snow cover anomaly in an area of high inter- and intra-annual snow cover variability can show a stronger teleconnection to European winter climate than previously reported for broader snow cover anomalies. In particular, anomalous late-season snow in the Great Plains may shift the NAO toward the positive phase.


Sign in / Sign up

Export Citation Format

Share Document