Combinatorics: A Very Short Introduction

Author(s):  
Robin Wilson

Combinatorics is the branch of mathematics concerned with selecting, arranging, and listing or counting collections of objects. Dating back some 3000 years, and initially consisting mainly of the study of permutations and combinations, its scope has broadened to include topics such as graph theory, partitions of numbers, block designs, design of codes, and latin squares. Combinatorics: A Very Short Introduction provides an overview of the field and its applications in mathematics and computer theory, considering problems from the shortest routes covering certain stops to the minimum number of colours needed to draw a map with different colours for neighbouring countries.

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1825
Author(s):  
Viliam Ďuriš ◽  
Gabriela Pavlovičová ◽  
Dalibor Gonda ◽  
Anna Tirpáková

The presented paper is devoted to an innovative way of teaching mathematics, specifically the subject combinatorics in high schools. This is because combinatorics is closely connected with the beginnings of informatics and several other scientific disciplines such as graph theory and complexity theory. It is important in solving many practical tasks that require the compilation of an object with certain properties, proves the existence or non-existence of some properties, or specifies the number of objects of certain properties. This paper examines the basic combinatorial structures and presents their use and learning using relations through the Placemat method in teaching process. The effectiveness of the presented innovative way of teaching combinatorics was also verified experimentally at a selected high school in the Slovak Republic. Our experiment has confirmed that teaching combinatorics through relationships among talented children in mathematics is more effective than teaching by a standard algorithmic approach.


d'CARTESIAN ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 86
Author(s):  
Yevie Ingamita ◽  
Nelson Nainggolan ◽  
Benny Pinontoan

Graph Theory is one of the mathematical sciences whose application is very wide in human life. One of theory graph application is Map Coloring. This research discusses how to color the map of Minahasa Regency by using the minimum color that possible. The algorithm used to determine the minimum color in coloring the region of Minahasa Regency that is Sequential Color Algorithm. The Sequential Color Algorithm is an algorithm used in coloring a graph with k-color, where k is a positive integer. Based on the results of this research was found that the Sequential Color Algorithm can be used to color the map of Minahasa Regency with the minimum number of colors or chromatic number χ(G) obtained in the coloring of 25 sub-districts on the map of Minahasa Regency are 3 colors (χ(G) = 3).


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Muhammad Ahsan ◽  
Zohaib Zahid ◽  
Dalal Alrowaili ◽  
Aiyared Iampan ◽  
Imran Siddique ◽  
...  

The most productive application of graph theory in chemistry is the representation of molecules by the graphs, where vertices and edges of graphs are the atoms and valence bonds between a pair of atoms, respectively. For a vertex w and an edge f = c 1 c 2 of a connected graph G , the minimum number from distances of w with c 1 and c 2 is called the distance between w and f . If for every two distinct edges f 1 , f 2 ∈ E G , there always exists w 1 ∈ W E ⊆ V G such that d f 1 , w 1 ≠ d f 2 , w 1 , then W E is named as an edge metric generator. The minimum number of vertices in W E is known as the edge metric dimension of G . In this paper, we calculate the edge metric dimension of ortho-polyphenyl chain graph O n , meta-polyphenyl chain graph M n , and the linear [n]-tetracene graph T n and also find the edge metric dimension of para-polyphenyl chain graph L n . It has been proved that the edge metric dimension of O n , M n , and T n is bounded, while L n is unbounded.


10.37236/9118 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Saieed Akbari ◽  
Trent G. Marbach ◽  
Rebecca J. Stones ◽  
Zhuanhao Wu

We define a $d$-balanced equi-$n$-square $L=(l_{ij})$, for some divisor $d$ of $n$, as an $n \times n$ matrix containing symbols from $\mathbb{Z}_n$ in which any symbol that occurs in a row or column, occurs exactly $d$ times in that row or column. We show how to construct a $d$-balanced equi-$n$-square from a partition of a Latin square of order $n$ into $d \times (n/d)$ subrectangles. In graph theory, $L$ is equivalent to a decomposition of $K_{n,n}$ into $d$-regular spanning subgraphs of $K_{n/d,n/d}$. We also study when $L$ is diagonally cyclic, defined as when $l_{(i+1)(j+1)}=l_{ij}+1$ for all $i,j \in \mathbb{Z}_n$, which correspond to cyclic such decompositions of $K_{n,n}$ (and thus $\alpha$-labellings). We identify necessary conditions for the existence of (a) $d$-balanced equi-$n$-squares, (b) diagonally cyclic $d$-balanced equi-$n$-squares, and (c) Latin squares of order $n$ which partition into $d \times (n/d)$ subrectangles. We prove the necessary conditions are sufficient for arbitrary fixed $d \geq 1$ when $n$ is sufficiently large, and we resolve the existence problem completely when $d \in \{1,2,3\}$. Along the way, we identify a bijection between $\alpha$-labellings of $d$-regular bipartite graphs and what we call $d$-starters: matrices with exactly one filled cell in each top-left-to-bottom-right unbroken diagonal, and either $d$ or $0$ filled cells in each row and column. We use $d$-starters to construct diagonally cyclic $d$-balanced equi-$n$-squares, but this also gives new constructions of $\alpha$-labellings.


2019 ◽  
Vol 9 (4) ◽  
pp. 681 ◽  
Author(s):  
Dmitrij Olifer ◽  
Nikolaj Goranin ◽  
Antanas Cenys ◽  
Arnas Kaceniauskas ◽  
Justinas Janulevicius

One of the best ways to protect an organization’s assets is to implement security requirements defined by different standards or best practices. However, such an approach is complicated and requires specific skills and knowledge. In case an organization applies multiple security standards, several problems can arise related to overlapping or conflicting security requirements, increased expenses on security requirement implementation, and convenience of security requirement monitoring. To solve these issues, we propose using graph theory techniques. Graphs allow the presentation of security requirements of a standard as graph vertexes and edges between vertexes, and would show the relations between different requirements. A vertex cover algorithm is proposed for minimum security requirement identification, while graph isomorphism is proposed for comparing existing organization controls against a set of minimum requirements identified in the previous step.


1966 ◽  
Vol 1 (1) ◽  
pp. 132-148 ◽  
Author(s):  
Jane W. Di Paola
Keyword(s):  

Author(s):  
Robin Wilson

Block designs are used when designing experiments in which varieties of a commodity are compared. ‘Designs and geometry’ introduces various types of block design, and then relates them to finite projective planes and orthogonal latin squares. A block design consists of a set of v varieties arranged into b blocks. If each block contains the same number k of varieties, each variety appears in the same number r of blocks, then for every block design we have v × r = b × k. A balanced incomplete-block design is when all pairs of varieties in a design are compared the same number of times. A triple system is when each block has three varieties.


1977 ◽  
Vol 13 (2) ◽  
pp. 143-148
Author(s):  
H. A. Abou-el-Fittouh

SUMMARYThe efficiency of the Latin square design relative to the completely randomized and the randomized complete block designs is expressed in the form (A+BF) where F is a variance ratio (or the sum of two ratios). The constants A and B are evaluated, and lines showing relative efficiencies for given F values are drawn for the 5 × 5, 6 × 6, 7 × 7 and 8 × 8 Latin squares.


Sign in / Sign up

Export Citation Format

Share Document