scholarly journals Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study

2014 ◽  
Vol 179 (6) ◽  
pp. 764-774 ◽  
Author(s):  
Anoop D. Shah ◽  
Jonathan W. Bartlett ◽  
James Carpenter ◽  
Owen Nicholas ◽  
Harry Hemingway
Keyword(s):  
Author(s):  
Ahmad R. Alsaber ◽  
Jiazhu Pan ◽  
Adeeba Al-Hurban 

In environmental research, missing data are often a challenge for statistical modeling. This paper addressed some advanced techniques to deal with missing values in a data set measuring air quality using a multiple imputation (MI) approach. MCAR, MAR, and NMAR missing data techniques are applied to the data set. Five missing data levels are considered: 5%, 10%, 20%, 30%, and 40%. The imputation method used in this paper is an iterative imputation method, missForest, which is related to the random forest approach. Air quality data sets were gathered from five monitoring stations in Kuwait, aggregated to a daily basis. Logarithm transformation was carried out for all pollutant data, in order to normalize their distributions and to minimize skewness. We found high levels of missing values for NO2 (18.4%), CO (18.5%), PM10 (57.4%), SO2 (19.0%), and O3 (18.2%) data. Climatological data (i.e., air temperature, relative humidity, wind direction, and wind speed) were used as control variables for better estimation. The results show that the MAR technique had the lowest RMSE and MAE. We conclude that MI using the missForest approach has a high level of accuracy in estimating missing values. MissForest had the lowest imputation error (RMSE and MAE) among the other imputation methods and, thus, can be considered to be appropriate for analyzing air quality data.


2018 ◽  
Vol 8 (8) ◽  
pp. 1216 ◽  
Author(s):  
Mousa Abad ◽  
Ali Abkar ◽  
Barat Mojaradi

Early-season area estimation of the winter wheat crop as a strategic product is important for decision-makers. Multi-temporal images are the best tool to measure early-season winter wheat crops, but there are issues with classification. Classification of multi-temporal images is affected by factors such as training sample size, temporal resolution, vegetation index (VI) type, temporal gradient of spectral bands and VIs, classifiers, and values missed under cloudy conditions. This study addresses the effect of the temporal resolution and VIs, along with the spectral and VIs gradient on the random forest (RF) classifier when missing data occurs in multi-temporal images. To investigate the appropriate temporal resolution for image acquisition, a study area is selected on an overlapping area between two Landsat Data Continuity Mission (LDCM) paths. In the proposed method, the missing data from cloudy pixels are retrieved using the average of the k-nearest cloudless pixels in the feature space. Next, multi-temporal image analysis is performed by considering different scenarios provided by decision-makers for the desired crop types, which should be extracted early in the season in the study areas. The classification results obtained by RF improved by 2.2% when the temporally-missing data were retrieved using the proposed method. Moreover, the experimental results demonstrated that when the temporal resolution of Landsat-8 is increased to one week, the classification task can be conducted earlier with slightly better overall accuracy (OA) and kappa values. The effect of incorporating VIs along with the temporal gradients of spectral bands and VIs into the RF classifier improved the OA by 3.1% and the kappa value by 6.6%, on average. The results show that if only three optimum images from seasonal changes in crops are available, the temporal gradient of the VIs and spectral bands becomes the primary tool available for discriminating wheat from barley. The results also showed that if wheat and barley are considered as single class versus other classes, with the use of images associated with 162 and 163 paths, both crops can be classified in March (at the beginning of the growth stage) with an overall accuracy of 97.1% and kappa coefficient of 93.5%.


2021 ◽  
Author(s):  
Nwamaka Okafor

IoT sensors are gaining more popularity in the environmental monitoring space due to their relatively small size, cost of acquisition and ease of installation and operation. They are becoming increasingly important<br>supplement to traditional monitoring systems, particularly for in-situ based monitoring. However, data collection based on IoT sensors are often plagued with missing values usually occurring as a result of sensor faults, network failures, drifts and other operational issues. Several imputation strategies have been proposed for handling missing values in various application domains. This paper examines the performance of different imputation techniques including Multiple Imputation by Chain Equations (MICE), Random forest based imputation (missForest) and K-Nearest Neighbour (KNN) for handling missing values on sensor networks deployed for the quantification of Green House Gases(GHGs). Two tasks were conducted: first, Ozone (O3) and NO2/O3 concentration data collected using Aeroqual and Cairclip sensors respectively over a six months data collection period were corrupted by removing data intervals at different missing periods (p) where p 2 f1day; 1week; 2weeks; 1monthg and also at random points on the dataset at varying proportion (r) where r 2 f5%; 10%; 30%; 50%; 70%g. The missing data were then filled using the different imputation strategies and their imputation accuracy calculated. Second, the performance of sensor calibration by different regression models including Multi Linear Regression (MLR), Decision Tree (DT), Random Forest (RF) and XGBoost (XGB) trained on the different imputed datasets were evaluated. The analysis showed the MICE technique to outperform the others in imputing the missing values on both the O3 and NO2/O3 datasets when missingness was introduced over periods p. MissForest, however, outperformed the rest when missingness was introduced as randomly occuring point errors. While the analysis demonstrated the effects of missing and imputed data on sensor calibration, experimental results showed that a simple model on the imputed dataset can achieve state of-the-art result on in-situ sensor calibration, improving the data quality of the sensor.


Author(s):  
Ahmad Alsaber ◽  
Adeeba Al‐Herz ◽  
Jiazhu Pan ◽  
Ahmad T. AL‐Sultan ◽  
Divya Mishra ◽  
...  

2021 ◽  
Author(s):  
Songyu Zhang ◽  
Yuchen Zhou ◽  
Jinghua Yan ◽  
Fanliang Bu

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ling Jiang ◽  
Tingsheng Zhao ◽  
Chuxuan Feng ◽  
Wei Zhang

PurposeThis research is aimed at predicting tower crane accident phases with incomplete data.Design/methodology/approachThe tower crane accidents are collected for prediction model training. Random forest (RF) is used to conduct prediction. When there are missing values in the new inputs, they should be filled in advance. Nevertheless, it is difficult to collect complete data on construction site. Thus, the authors use multiple imputation (MI) method to improve RF. Finally the prediction model is applied to a case study.FindingsThe results show that multiple imputation RF (MIRF) can effectively predict tower crane accident when the data are incomplete. This research provides the importance rank of tower crane safety factors. The critical factors should be focused on site, because the missing data affect the prediction results seriously. Also the value of critical factors influences the safety of tower crane.Practical implicationThis research promotes the application of machine learning methods for accident prediction in actual projects. According to the onsite data, the authors can predict the accident phase of tower crane. The results can be used for tower crane accident prevention.Originality/valuePrevious studies have seldom predicted tower crane accidents, especially the phase of accident. This research uses tower crane data collected on site to predict the phase of the tower crane accident. The incomplete data collection is considered in this research according to the actual situation.


Sign in / Sign up

Export Citation Format

Share Document