Pharmacy leaders discuss the future of telehealth at virtual PELA® conference

Author(s):  
Kate Traynor
Keyword(s):  
Author(s):  
Jordan Long ◽  
Samuel Calabrese ◽  
Ahmed Al-jedai ◽  
Anthony Boyd ◽  
Michael Cotugno ◽  
...  

Abstract Disclaimer In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose The proceedings of an international summit on the current and desired future state of use of robotic systems to compound intravenous (IV) solutions are summarized. Summary The International IV Robotics Summit was held at the Cleveland Clinic main campus in Cleveland, OH, on April 29 and 30, 2019. The purpose of the summit was 2-fold: (1) to define the current state of robotic IV compounding and (2) to develop a guide for automation companies, pharmacy departments, and drug manufacturers to improve the technology and expand the use of IV robotics in health systems in the future. The first day of the summit included 45-minute presentations by each of the speakers. Each lecturer recounted a different hospital’s experience implementing and using IV robotics. On day 2 of the summit, an expert panel dedicated to mapping the future of IV robotics was convened to determine barriers to widespread adoption of IV robotics in health systems and offer potential solutions to remove these barriers. The expert panel targeted 3 specific audiences: robot manufacturers, drug manufacturers, and fellow pharmacy leaders. Conclusion It is the hope of the international faculty that the information that emerged from the summit can be used by others to successfully implement IV compounding robotics in their sterile products areas to maximize patient safety. The summit also served as a call to action for pharmacy leaders, drug manufacturers, and robotic companies to develop a safer, more efficient future for patients by working together to optimize the development and operation of IV robotics.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1978 ◽  
Vol 48 ◽  
pp. 387-388
Author(s):  
A. R. Klemola
Keyword(s):  

Second-epoch photographs have now been obtained for nearly 850 of the 1246 fields of the proper motion program with centers at declination -20° and northwards. For the sky at 0° and northward only 130 fields remain to be taken in the next year or two. The 270 southern fields with centers at -5° to -20° remain for the future.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
Nicholas J Severs

In his pioneering demonstration of the potential of freeze-etching in biological systems, Russell Steere assessed the future promise and limitations of the technique with remarkable foresight. Item 2 in his list of inherent difficulties as they then stood stated “The chemical nature of the objects seen in the replica cannot be determined”. This defined a major goal for practitioners of freeze-fracture which, for more than a decade, seemed unattainable. It was not until the introduction of the label-fracture-etch technique in the early 1970s that the mould was broken, and not until the following decade that the full scope of modern freeze-fracture cytochemistry took shape. The culmination of these developments in the 1990s now equips the researcher with a set of effective techniques for routine application in cell and membrane biology.Freeze-fracture cytochemical techniques are all designed to provide information on the chemical nature of structural components revealed by freeze-fracture, but differ in how this is achieved, in precisely what type of information is obtained, and in which types of specimen can be studied.


Sign in / Sign up

Export Citation Format

Share Document