scholarly journals The influence of floral symmetry, dependence on pollinators and pollination generalization on flower size variation

2014 ◽  
Vol 114 (1) ◽  
pp. 157-165 ◽  
Author(s):  
A. Lázaro ◽  
Ø. Totland
AoB Plants ◽  
2019 ◽  
Vol 11 (5) ◽  
Author(s):  
Jun Mochizuki ◽  
Tomoyuki Itagaki ◽  
Yuta Aoyagi Blue ◽  
Masaya Ito ◽  
Satoki Sakai

Abstract Zygomorphic flower species tend to show lower flower size variation than actinomorphic flower species. Have these differences also brought an association in ovule and seed production that has arisen due to natural selection in these species? Flowers were collected from 29 actinomorphic and 20 zygomorphic flower species, and fruits were collected from 21 actinomorphic and 14 zygomorphic flower species in Miyagi and Aomori prefectures, in Japan. The coefficient of variations (CVs) of flower sizes, mean ovule sizes of flowers, ovule numbers of flowers and mean seed sizes of fruits were calculated. The CV of flower sizes was marginally different between the floral symmetry types; tending to be lower in the zygomorphic flower species than in the actinomorphic flower species. The CVs of mean ovule sizes and ovule numbers of flowers increased with increase in the CV of flower sizes in the actinomorphic flower species but not in the zygomorphic flower species. Mean ovule number of flowers tends to increase with increase in mean flower size in the actinomorphic flower species but not in the zygomorphic flower species. The degrees in variations in ovule size and number of flowers were influenced by the interaction of floral symmetry type and flower size variation, suggesting that floral symmetry also has brought an evolutionary association in ovule production by flowers.


2004 ◽  
Vol 24 (5) ◽  
pp. 593-598 ◽  
Author(s):  
Atushi Ushimaru ◽  
Satoshi Kikuchi ◽  
Ryuji Yonekura ◽  
Atsushi Maruyama ◽  
Nao Yanagisawa ◽  
...  

2016 ◽  
Vol 11 (1) ◽  
pp. 152-157 ◽  
Author(s):  
Mitsuru Hattori ◽  
Yusuke Nagano ◽  
Yoshinori Shinohara ◽  
Takao Itino

2015 ◽  
Vol 102 (12) ◽  
pp. 2032-2040 ◽  
Author(s):  
Aoi Nikkeshi ◽  
Daiki Kurimoto ◽  
Atushi Ushimaru
Keyword(s):  

2016 ◽  
Vol 113 (48) ◽  
pp. 13911-13916 ◽  
Author(s):  
Adrien Sicard ◽  
Christian Kappel ◽  
Young Wha Lee ◽  
Natalia Joanna Woźniak ◽  
Cindy Marona ◽  
...  

Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genusCapsella. Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease inSAPactivity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles.


Telopea ◽  
2020 ◽  
Vol 23 ◽  
pp. 155-162
Author(s):  
Matthew Renner ◽  

Danhatchia novaehollandiae D.L.Jones & M.A.Clem. and D. australis (Hatch) Garay & Christenson were separated at species rank due to differences in petal length and flower opening, with the Australian species having smaller, tardily opening flowers. From this, flower lengths for Australia and New Zealand are expected to be bi-modally distributed with peaks at c. 3 mm and c. 5 mm respectively. Flowers on all available herbarium specimens in AK, CANB, and NSW were measured, and flower length was found to be unimodal, with nearly identical ranges in Australian and New Zealand plants. Flower size variation in Australian and New Zealand Danhatchia specimens has two significant contributing components, inter-individual variation, and ontogenetic variation where flowers increase in size as they age. Dimensions previously recorded for the two species reflect upper and lower limits on the range of variation in flower size present in both New Zealand and Australia, respectively. Within herbarium material, 20% of flowers on New Zealand specimens, and 40% of flowers on Australian specimens exhibited signs of opening. There was no correlation between flower size and opening, as might be expected if the two species were both present in Australia and/or New Zealand. Neither the biogeographic context, pollination system, nor morphological evidence support Danhatchia australis and D. novaehollandiae as distinct species.


2008 ◽  
Vol 90 (1) ◽  
pp. 111-118 ◽  
Author(s):  
THOMAS R. MEAGHER ◽  
DENISE E. COSTICH

SummaryOne of the long-standing mysteries in genomic evolution is the observation that much of the genome is composed of repetitive DNA, resulting in inter- and intraspecific variation in nuclear DNA content. Our discovery of a negative correlation between nuclear DNA content and flower size in Silene latifolia has been supported by our subsequent investigation of changes in DNA content as a correlated response to selection on flower size. Moreover, we have observed a similar trend across a range of related dioecious species in Silene sect. Elisanthe. Given the presence of sex chromosomes in dioecious Silene species, and the tendency of sex chromosomes to accumulate repetitive DNA, it seems plausible that dioecious species undergo genomic evolution in ways that differ from what one might expect in hermaphroditic species. Specifically, we query whether the observed relationship between nuclear DNA content and flower size observed in dioecious Silene is a peculiarity of sex chromosome evolution. In the present study we investigated nuclear DNA content and flower size variation in hermaphroditic species of Silene sect. Siphonomorpha, as close relatives of the dioecious species studied previously. Although the nuclear DNA contents of these species were lower than those for species in sect. Elisanthe, there was still significant intra- as well as interspecific variation in nuclear DNA content. Flower size variation was found among species of sect. Siphonomorpha for petal claw and petal limb lengths, but not for calyx diameter. This last trait varies extensively in sect. Elisanthe, in part due to sex-specific selection. A negative correlation with nuclear DNA content was found across populations for petal limb length, but not for other floral dimensions. We conclude that impacts of nuclear DNA content on phenotypic evolution do manifest themselves in hermaphroditic species, so that the effects observed in sect. Elisanthe, and particularly in S. latifolia, while perhaps amplified by the genomic impacts of sex chromosomes, are not limited to dioecious taxa.


1999 ◽  
Vol 154 (4) ◽  
pp. 484-488 ◽  
Author(s):  
Lorne M. Wolfe ◽  
Jennifer L. Krstolic
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document