scholarly journals Testing models for the leaf economics spectrum with leaf and whole-plant traits inArabidopsis thaliana

AoB Plants ◽  
2015 ◽  
Vol 7 ◽  
pp. plv049 ◽  
Author(s):  
Benjamin Blonder ◽  
François Vasseur ◽  
Cyrille Violle ◽  
Bill Shipley ◽  
Brian J. Enquist ◽  
...  
Author(s):  
Adam R Martin ◽  
Marney E Isaac

Abstract Background and Aims Size-dependent changes in plant traits are an important source of intraspecific trait variation. However, there are few studies that have tested if leaf trait co-variation and/or trade-offs follow a within-genotype leaf economics spectrum (LES) related to plant size and reproductive onset. To our knowledge, there are no studies on any plant species that have tested whether or not the shape of a within-genotype LES that describes how traits covary across whole plant sizes, is the same as the shape of a within-genotype LES that represents environmentally driven trait plasticity. Methods We quantified size-dependent variation in eight leaf traits in a single coffee genotype (Coffea arabica var. Caturra) in managed agroecosystems with different environmental conditions (light and fertilization treatments), and evaluated these patterns with respect to reproductive onset. We also evaluated if trait covariation along a within-genotype plant-size LES differed from a within-genotype environmental LES defined with trait data from coffee growing in different environmental conditions. Key Results Leaf economics traits related to resource acquisition – maximum photosynthetic rates (A) and mass-based leaf nitrogen (N) concentrations – declined linearly with plant size. Structural traits – leaf mass, leaf thickness, and leaf mass per unit area (LMA) – and leaf area increased with plant size beyond reproductive onset, then declined in larger plants. Three primary LES traits (mass-based A, leaf N and LMA) covaried across a within-genotype plant-size LES, with plants moving towards the ‘resource-conserving’ end of the LES as they grow larger; in coffee these patterns were nearly identical to a within-genotype environmental LES. Conclusions Our results demonstrate that a plant-size LES exists within a single genotype. Our findings indicate that in managed agroecosystems where resource availability is high the role of reproductive onset in driving within-genotype trait variability, and the strength of covariation and trade-offs among LES traits, are less pronounced compared with plants in natural systems. The consistency in trait covariation in coffee along both plant-size and environmental LES axes indicates strong constraints on leaf form and function that exist within plant genotypes.


2016 ◽  
Vol 113 (28) ◽  
pp. E4043-E4051 ◽  
Author(s):  
Gregory P. Asner ◽  
David E. Knapp ◽  
Christopher B. Anderson ◽  
Roberta E. Martin ◽  
Nicholas Vaughn

Leaf economics spectrum (LES) theory suggests a universal trade-off between resource acquisition and storage strategies in plants, expressed in relationships between foliar nitrogen (N) and phosphorus (P), leaf mass per area (LMA), and photosynthesis. However, how environmental conditions mediate LES trait interrelationships, particularly at large biospheric scales, remains unknown because of a lack of spatially explicit data, which ultimately limits our understanding of ecosystem processes, such as primary productivity and biogeochemical cycles. We used airborne imaging spectroscopy and geospatial modeling to generate, to our knowledge, the first biospheric maps of LES traits, here centered on 76 million ha of Andean and Amazonian forest, to assess climatic and geophysical determinants of LES traits and their interrelationships. Elevation and substrate were codominant drivers of leaf trait distributions. Multiple additional climatic and geophysical factors were secondary determinants of plant traits. Anticorrelations between N and LMA followed general LES theory, but topo-edaphic conditions strongly mediated and, at times, eliminated this classic relationship. We found no evidence for simple P–LMA or N–P trade-offs in forest canopies; rather, we mapped a continuum of N–P–LMA interactions that are sensitive to elevation and temperature. Our results reveal nested climatic and geophysical filtering of LES traits and their interrelationships, with important implications for predictions of forest productivity and acclimation to rapid climate change.


2018 ◽  
Author(s):  
Legay Nicolas ◽  
Grassein Fabrice ◽  
Arnoldi Cindy ◽  
Segura Raphaël ◽  
Laîné Philippe ◽  
...  

AbstractThe leaf economics spectrum (LES) is based on a suite of leaf traits related to plant functioning and ranges from resource-conservative to resource-acquisitive strategies. However, the relationships with root traits, and the associated belowground plant functioning such as N uptake, including nitrate (NO3-) and ammonium (NH4+), is still poorly known. Additionally, environmental variations occurring both in time and in space could uncouple LES from root traits. We explored, in subalpine grasslands, the relationships between leaf and root morphological traits for 3 dominant perennial grass species, and to what extent they contribute to the whole-plant economics spectrum. We also investigated the link between this spectrum and NO3- and NH4+ uptake rates, as well as the variations of uptake across four grasslands differing by the land-use history at peak biomass and in autumn. Although poorly correlated with leaf traits, root traits contributed to an economic spectrum at the whole plant level. Higher NH4+ and NO3- uptake abilities were associated with the resource-acquisitive strategy.Nonetheless, NH4+ and NO3- uptake within species varied between land-uses and with sampling time, suggesting that LES and plant traits are good, but still incomplete, descriptors of plant functioning. Although the NH4+: NO3- uptake ratio was different between plant species in our study, they all showed a preference for NH4+, and particularly the most conservative species. Soil environmental variations between grasslands and sampling times may also drive to some extent the NH4+ and NO3- uptake ability of species. Our results support the current efforts to build a more general framework including above- and below-ground processes when studying plant community functioning.


2021 ◽  
Author(s):  
Clay J. Morrow ◽  
Samuel J. Jaeger ◽  
Richard L. Lindroth

Abstract Patterns of trait expression within some plant species have recently been shown to follow patterns described by the leaf economics spectrum paradigm. Resistance to herbivores is also expected to covary with leaf economics traits. We selected multiple mature Populus tremuloides genotypes from a common garden to assess whether aspen leaf economics patterns follow those observed among species globally. We also evaluated leaf economics strategies in the context of insect resistance by conducting bioassays to determine the effects of plant traits on preference and performance of Lymantria dispar. We found that: 1) intraspecific trait patterns of P. tremuloides parallel those exhibited by the interspecific leaf economics spectrum, 2) herbivores preferred leaves from genotypes with resource-acquisitive strategies, and 3) herbivores also performed best on genotypes with resource-acquisitive strategies. We conclude that a leaf economics spectrum that incorporates defense traits is a useful tool for explaining intraspecific patterns of variation in plant strategies, including resistance to herbivores.


2021 ◽  
Author(s):  
Ellie Goud ◽  
Anurag Agrawal ◽  
Jed Sparks

Abstract Despite long-standing theory for classifying plant ecological strategies, limited data directly links organismal traits to whole-plant growth. We compared trait-growth relationships based on three prominent theories: growth analysis, Grime’s CSR triangle, and the leaf economics spectrum (LES). Under these schemes, growth is hypothesized to be predicted by traits related to biomass investments, leaf structure or gas exchange, respectively. In phylogenetic analyses of 30 diverse milkweeds (Asclepias spp.) and 21 morphological and ecophysiological traits, growth rate varied 50-fold and was best predicted by growth analysis and CSR traits, as well as total leaf area and plant height. Despite two LES traits correlating with growth, they contradicted predictions and leaf traits did not scale with root and stem characteristics. Thus, although combining leaf traits and whole-plant allocation best predicts growth, when destructive measures are not feasible, we suggest total leaf area and plant height, or easy-to-measure traits associated with the CSR classification.


2018 ◽  
Author(s):  
Kevin Sartori ◽  
François Vasseur ◽  
Cyrille Violle ◽  
Etienne Baron ◽  
Marianne Gerard ◽  
...  

SummaryThe slow-fast continuum describes how resource allocation constrains life-history strategies in many organisms. In plants, it is reflected by a trade-off at the leaf level between the rate of carbon assimilation and lifespan, the so-called Leaf Economics Spectrum (LES). However, it is still unclear how the LES is connected to the slow-fast syndrome, and reflects adaptation to climate. Here, we measured growth, morpho-physiological and life-history traits at both leaf and whole-plant levels in 384 natural accessions of Arabidopsis thaliana. We examined the extent to which the LES continuum parallels the slow-fast continuum, and compared trait variation to neutral genetic differentiation between lineages. We found that the LES is tightly linked to variation in whole-plant functioning, relative growth rate and life history. A genetic analysis further suggested that phenotypic differentiation is linked to the evolution of different slow-fast strategies in contrasted climates. Together, our findings shed light on the physiological bases of the slow-fast continuum, and its role for plant adaptation to climate.


Plant Ecology ◽  
2014 ◽  
Vol 215 (11) ◽  
pp. 1351-1359 ◽  
Author(s):  
Simon Pierce ◽  
Arianna Bottinelli ◽  
Ilaria Bassani ◽  
Roberta M. Ceriani ◽  
Bruno E. L. Cerabolini

Sign in / Sign up

Export Citation Format

Share Document