How well do seed production traits correlate with leaf traits, whole-plant traits and plant ecological strategies?

Plant Ecology ◽  
2014 ◽  
Vol 215 (11) ◽  
pp. 1351-1359 ◽  
Author(s):  
Simon Pierce ◽  
Arianna Bottinelli ◽  
Ilaria Bassani ◽  
Roberta M. Ceriani ◽  
Bruno E. L. Cerabolini
2019 ◽  
Vol 40 (2) ◽  
pp. 183-197 ◽  
Author(s):  
Elisée Bahati Ntawuhiganayo ◽  
Félicien K Uwizeye ◽  
Etienne Zibera ◽  
Mirindi E Dusenge ◽  
Camille Ziegler ◽  
...  

Abstract Tropical canopies are complex, with multiple canopy layers and pronounced gap dynamics contributing to their high species diversity and productivity. An important reason for this complexity is the large variation in shade tolerance among different tree species. At present, we lack a clear understanding of which plant traits control this variation, e.g., regarding the relative contributions of whole-plant versus leaf traits or structural versus physiological traits. We investigated a broad range of traits in six tropical montane rainforest tree species with different degrees of shade tolerance, grown under three different radiation regimes (under the open sky or beneath sparse or dense canopies). The two distinct shade-tolerant species had higher fractional biomass in leaves and branches while shade-intolerant species invested more into stems, and these differences were greater under low radiation. Leaf respiration and photosynthetic light compensation point did not vary with species shade tolerance, regardless of radiation regime. Leaf temperatures in open plots were markedly higher in shade-tolerant species due to their low transpiration rates and large leaf sizes. Our results suggest that interspecific variation in shade tolerance of tropical montane trees is controlled by species differences in whole-plant biomass allocation strategy rather than by difference in physiological leaf traits determining leaf carbon balance at low radiation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lingbo Liu ◽  
Lejun Yu ◽  
Dan Wu ◽  
Junli Ye ◽  
Hui Feng ◽  
...  

A low-cost portable wild phenotyping system is useful for breeders to obtain detailed phenotypic characterization to identify promising wild species. However, compared with the larger, faster, and more advanced in-laboratory phenotyping systems developed in recent years, the progress for smaller phenotyping systems, which provide fast deployment and potential for wide usage in rural and wild areas, is quite limited. In this study, we developed a portable whole-plant on-device phenotyping smartphone application running on Android that can measure up to 45 traits, including 15 plant traits, 25 leaf traits and 5 stem traits, based on images. To avoid the influence of outdoor environments, we trained a DeepLabV3+ model for segmentation. In addition, an angle calibration algorithm was also designed to reduce the error introduced by the different imaging angles. The average execution time for the analysis of a 20-million-pixel image is within 2,500 ms. The application is a portable on-device fast phenotyping platform providing methods for real-time trait measurement, which will facilitate maize phenotyping in field and benefit crop breeding in future.


2018 ◽  
Author(s):  
Legay Nicolas ◽  
Grassein Fabrice ◽  
Arnoldi Cindy ◽  
Segura Raphaël ◽  
Laîné Philippe ◽  
...  

AbstractThe leaf economics spectrum (LES) is based on a suite of leaf traits related to plant functioning and ranges from resource-conservative to resource-acquisitive strategies. However, the relationships with root traits, and the associated belowground plant functioning such as N uptake, including nitrate (NO3-) and ammonium (NH4+), is still poorly known. Additionally, environmental variations occurring both in time and in space could uncouple LES from root traits. We explored, in subalpine grasslands, the relationships between leaf and root morphological traits for 3 dominant perennial grass species, and to what extent they contribute to the whole-plant economics spectrum. We also investigated the link between this spectrum and NO3- and NH4+ uptake rates, as well as the variations of uptake across four grasslands differing by the land-use history at peak biomass and in autumn. Although poorly correlated with leaf traits, root traits contributed to an economic spectrum at the whole plant level. Higher NH4+ and NO3- uptake abilities were associated with the resource-acquisitive strategy.Nonetheless, NH4+ and NO3- uptake within species varied between land-uses and with sampling time, suggesting that LES and plant traits are good, but still incomplete, descriptors of plant functioning. Although the NH4+: NO3- uptake ratio was different between plant species in our study, they all showed a preference for NH4+, and particularly the most conservative species. Soil environmental variations between grasslands and sampling times may also drive to some extent the NH4+ and NO3- uptake ability of species. Our results support the current efforts to build a more general framework including above- and below-ground processes when studying plant community functioning.


2021 ◽  
Author(s):  
Ellie Goud ◽  
Anurag Agrawal ◽  
Jed Sparks

Abstract Despite long-standing theory for classifying plant ecological strategies, limited data directly links organismal traits to whole-plant growth. We compared trait-growth relationships based on three prominent theories: growth analysis, Grime’s CSR triangle, and the leaf economics spectrum (LES). Under these schemes, growth is hypothesized to be predicted by traits related to biomass investments, leaf structure or gas exchange, respectively. In phylogenetic analyses of 30 diverse milkweeds (Asclepias spp.) and 21 morphological and ecophysiological traits, growth rate varied 50-fold and was best predicted by growth analysis and CSR traits, as well as total leaf area and plant height. Despite two LES traits correlating with growth, they contradicted predictions and leaf traits did not scale with root and stem characteristics. Thus, although combining leaf traits and whole-plant allocation best predicts growth, when destructive measures are not feasible, we suggest total leaf area and plant height, or easy-to-measure traits associated with the CSR classification.


Crop Science ◽  
2004 ◽  
Vol 44 (3) ◽  
pp. 988 ◽  
Author(s):  
Mia Sahramaa ◽  
Leena Hömmö ◽  
Lauri Jauhiainen

2016 ◽  
Vol 9 (11) ◽  
pp. 4227-4255 ◽  
Author(s):  
Bradley O. Christoffersen ◽  
Manuel Gloor ◽  
Sophie Fauset ◽  
Nikolaos M. Fyllas ◽  
David R. Galbraith ◽  
...  

Abstract. Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ε, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.


Plant Ecology ◽  
2017 ◽  
Vol 218 (10) ◽  
pp. 1221-1231 ◽  
Author(s):  
Cibele de Cássia-Silva ◽  
Marcus V. Cianciaruso ◽  
Leandro Maracahipes ◽  
Rosane G. Collevatti

2019 ◽  
Vol 182 ◽  
pp. 103933
Author(s):  
Qijia Li ◽  
Tao Su ◽  
Yusheng (Christopher) Liu ◽  
Cheng Quan

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 865
Author(s):  
Zuzana Münzbergová ◽  
Jiří Skuhrovec

Data on plant herbivore damage as well as on herbivore performance have been previously used to identify key plant traits driving plant–herbivore interactions. The extent to which the two approaches lead to similar conclusions remains to be explored. We determined the effect of a free-living leaf-chewing generalist caterpillar, Spodoptera littoralis (Lepidoptera: Noctuidae), on leaf damage of 24 closely related plant species from the Carduoideae subfamily and the effect of these plant species on caterpillar growth. We used a wide range of physical defense leaf traits and leaf nutrient contents as the plant traits. Herbivore performance and leaf damage were affected by similar plant traits. Traits related to higher caterpillar mortality (higher leaf dissection, number, length and toughness of spines and lower trichome density) also led to higher leaf damage. This fits with the fact that each caterpillar was feeding on a single plant and, thus, had to consume more biomass of the less suitable plants to obtain the same amount of nutrients. The key plant traits driving plant–herbivore interactions identified based on data on herbivore performance largely corresponded to the traits identified as important based on data on leaf damage. This suggests that both types of data may be used to identify the key plant traits determining plant–herbivore interactions. It is, however, important to carefully distinguish whether the data on leaf damage were obtained in the field or in a controlled feeding experiment, as the patterns expected in the two environments may go in opposite directions.


Sign in / Sign up

Export Citation Format

Share Document