generalist insect
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 20)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leslie Mann ◽  
Diane Laplanche ◽  
Ted C. J. Turlings ◽  
Gaylord A. Desurmont

AbstractInsect and gastropod herbivores are major plant consumers and their importance in the evolution of plant defensive traits is broadly recognized. However, their respective effects on plant responses have rarely been compared. Here we focused on plant volatile emissions (VOCs) following herbivory and compared the effects of herbivory by caterpillars of the generalist insect Spodoptera littoralis and by generalist slugs of the genus Arion on the VOCs emissions of 14 cultivated plant species. Results revealed that plants consistently produced higher amounts of volatiles and responded more specifically to caterpillar than to slug herbivory. Specifically, plants released on average 6.0 times more VOCs (total), 8.9 times more green leaf volatiles, 4.2 times more terpenoids, 6.0 times more aromatic hydrocarbons, and 5.7 times more other VOCs in response to 1 cm2 of insect damage than to 1 cm2 of slug damage. Interestingly, four of the plant species tested produced a distinct blend of volatiles following insect damage but not slug damage. These findings may result from different chemical elicitors or from physical differences in herbivory by the two herbivores. This study is an important step toward a more inclusive view of plant responses to different types of herbivores.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1951
Author(s):  
Francisco Rubén Badenes-Pérez ◽  
María Elena Cartea

The cabbage moth, Mamestra brassicae L. (Lepidoptera: Noctuidae), is a generalist insect pest of cruciferous crops. We tested glucosinolate induction by jasmonic acid (JA) and salicylic acid (SA), and by these phytohormones combined with feeding by M. brassicae larvae in four genotypes of kale, Brassica oleracea L. var. acephala (Brassicaceae). The genotypes tested had high glucobrassicin (genotype HGBS), low glucobrassicin (genotype LGBS), high sinigrin (genotype HSIN), and low sinigrin content (genotype LSIN). Application of JA increased indolic and total glucosinolate content in all kale genotypes 1, 3, and 9 days after treatment. For SA-treated plants, glucosinolate induction varied depending on the number of days after treatment and the genotype. Overall, herbivory by M. brassicae accentuated and attenuated the effects of JA and SA, respectively, on plant glucosinolate content. Larvae of M. brassicae gained less weight on leaves from plants treated with JA compared to leaves from control plants and plants treated with SA. In bioassays with leaf discs, a significant reduction of defoliation only occurred in JA-treated plants of the HSIN genotype. This research shows that previous herbivory alters the susceptibility of kale to M. brassicae and that induction of glucosinolates varies among kale genotypes differing in their glucosinolate content.


2021 ◽  
Author(s):  
Clay J. Morrow ◽  
Samuel J. Jaeger ◽  
Richard L. Lindroth

Abstract Patterns of trait expression within some plant species have recently been shown to follow patterns described by the leaf economics spectrum paradigm. Resistance to herbivores is also expected to covary with leaf economics traits. We selected multiple mature Populus tremuloides genotypes from a common garden to assess whether aspen leaf economics patterns follow those observed among species globally. We also evaluated leaf economics strategies in the context of insect resistance by conducting bioassays to determine the effects of plant traits on preference and performance of Lymantria dispar. We found that: 1) intraspecific trait patterns of P. tremuloides parallel those exhibited by the interspecific leaf economics spectrum, 2) herbivores preferred leaves from genotypes with resource-acquisitive strategies, and 3) herbivores also performed best on genotypes with resource-acquisitive strategies. We conclude that a leaf economics spectrum that incorporates defense traits is a useful tool for explaining intraspecific patterns of variation in plant strategies, including resistance to herbivores.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 954
Author(s):  
Jacinta M. Zalucki ◽  
David G. Heckel ◽  
Peng Wang ◽  
Suyog Kuwar ◽  
Daniel G. Vassão ◽  
...  

Brassicaceae (Cruciferae) are ostensibly defended in part against generalist insect herbivores by toxic isothiocyanates formed when protoxic glucosinolates are hydrolysed. Based on an analysis of published host records, feeding on Brassicas is widespread by both specialist and generalists in the Lepidoptera. The polyphagous noctuid moth Helicoverpa armigera is recorded as a pest on some Brassicas and we attempted to improve performance by artificial selection to, in part, determine if this contributes to pest status. Assays on cabbage and kale versus an artificial diet showed no difference in larval growth rate, development times and pupal weights between the parental and the selected strain after 2, 21 and 29 rounds of selection, nor in behaviour assays after 50 generations. There were large differences between the two Brassicas: performance was better on kale than cabbage, although both were comparable to records for other crop hosts, on which the species is a major pest. We discuss what determines “pest” status.


2021 ◽  
Vol 12 ◽  
Author(s):  
Longlong Sun ◽  
Wenhua Hou ◽  
Jiajia Zhang ◽  
Yuli Dang ◽  
Qiuyun Yang ◽  
...  

The host acceptances of insects can be determined largely by detecting plant metabolites using insect taste. In the present study, we investigated the gustatory sensitivity and feeding behaviors of two closely related caterpillars, the generalist Helicoverpa armigera (Hübner) and the specialist H. assulta (Guenée), to different plant metabolites by using the single sensillum recording technique and the dual-choice assay, aiming to explore the contribution of plant metabolites to the difference of diet breadth between the two species. The results depicted that the feeding patterns of caterpillars for both plant primary and secondary metabolites were significantly different between the two Helicoverpa species. Fructose, glucose, and proline stimulated feedings of the specialist H. assulta, while glucose and proline had no significant effect on the generalist H. armigera. Gossypol and tomatine, the secondary metabolites of host plants of the generalist H. armigera, elicited appetitive feedings of this insect species but drove aversive feedings of H. assulta. Nicotine and capsaicin elicited appetitive feedings of H. assulta, but drove aversive feedings of H. armigera. For the response of gustatory receptor neurons (GRNs) in the maxillary styloconic sensilla of caterpillars, each of the investigated primary metabolites induced similar responding patterns between the two Helicoverpa species. However, four secondary metabolites elicited different responding patterns of GRNs in the two species, which is consistent with the difference of feeding preferences to these compounds. In summary, our results of caterpillars’ performance to the plant metabolites could reflect the difference of diet breadth between the two Helicoverpa species. To our knowledge, this is the first report showing that plant secondary metabolites could drive appetitive feedings in a generalist insect species, which gives new insights of underscoring the adaptation mechanism of herbivores to host plants.


2021 ◽  
Author(s):  
Fikadu Biru ◽  
Tarikul Islam ◽  
Ximena Cibils-Steward ◽  
Christopher Cazzonelli ◽  
Rivka Elbaum ◽  
...  

<p>Silicon (Si) has important role in mitigating diverse biotic and abiotic stresses, mainly via silicification of plant tissues. However, environmental changes such as reduced atmospheric CO<sub>2</sub> concentrations may affect grass Si concentration which, in turn, can alter herbivore performance. Recently, we demonstrated that pre-industrial atmospheric CO<sub>2</sub> increased Si accumulation in a grass, however, how Si is deposited and whether this affects insect herbivores performance is unknown. We, therefore, investigated how pre-industrial (reduced) (rCO<sub>2</sub>, 200 ppm), ambient (aCO<sub>2</sub>, 410 ppm) and elevated (eCO<sub>2</sub>, 640 ppm) CO<sub>2</sub> concentrations and Si-treatments (Si+ or Si-) affect Si accumulation in the model grass, <em>Brachypodium distachyon</em> and its subsequent effects on the performance of the global insect, <em>Helicoverpa armigera</em>. rCO<sub>2</sub> caused Si concentrations to increase by 29% and 36% compared to aCO<sub>2</sub> and eCO<sub>2</sub>, respectively. Furthermore, increased Si accumulation under rCO<sub>2</sub> decreased herbivore relative growth rate (RGR) by 120% relative to eCO<sub>2, </sub>whereas<sub></sub> rCO<sub>2</sub> caused herbivore RGR to decrease by 26% compared to eCO<sub>2</sub>. Moreover, Si supplementation increased the density of trichomes, silica and prickle cells, and these changes in leaf surface morphology reduced larval feeding performance. The observed negative correlation between macrohair density, silica cell density, prickle cell density and herbivore RGR supports this. To our knowledge, this is the first study to demonstrate that increased Si accumulation under pre-industrial CO<sub>2</sub> environment reduced the performance of this generalist insect herbivore performance.<strong> </strong>Contrastingly, we found  reduced Si accumulation under higher CO<sub>2</sub>, which suggests  that some grasses might become more susceptible to insect herbivore under the projected climate change scenarios.</p>


2021 ◽  
Author(s):  
Antonin J.J. Crumière ◽  
Aidan James ◽  
Pol Lannes ◽  
Sophie Mallett ◽  
Anders Michelsen ◽  
...  

AbstractThe foraging trails of Atta leafcutter colonies are among the most iconic scenes in Neotropical ecosystems, with thousands of ants carrying freshly cut plant fragments back to their nests where they are used to provision a fungal food crop. We tested a hypothesis that the fungal cultivar’s multidimensional requirements for macronutrients (protein and carbohydrates) and minerals (Al, Ca, Cu, Fe, K, Mg, Mn, Na, P and Zn) govern the foraging breadth of Atta colombica leafcutter ants in a Panamanian rainforest. Analyses of freshly cut plant fragments carried by leafcutter foragers showed that the combination of fruits, flowers, and leaves provide for a broad realized nutritional niche that can maximize cultivar’s performance. And, while the leaves that comprised the most harvested resource also delivered an intake target containing protein in excess of the amounts that can maximize cultivar growth, in vitro experiments showed that the minerals P, Al, and Fe can enhance the cultivar’s tolerance to protein-biased substrates, and potentially expand the ants’ foraging niche. Yet, the cultivar also exhibits narrow margins between mineral limitation and toxicity that may render plant fragments with seemingly optimal blends of macronutrients unsuitable for provisioning. Our approach highlights that optimal foraging is inherently multidimensional and links the foraging behavior of a generalist insect herbivore to the fundamental nutritional niche of its microbial symbiont.Significance StatementColonies of Atta colombica leafcutter ants can contain millions of specialized workers exhibiting large-scale generalist herbivory. Yet, this generalist foraging niche also depends on the poorly understood physiological needs of the ants’ domesticated fungal cultivar. We show the cultivar’s fundamental nutritional niche is broad for carbohydrates but narrower for protein and a suite of minerals, but that the cultivar’s sensitivity to excess protein is also mediated by Al, Fe, and P. More generally, this study decouples the multidimensional foraging strategies that enable a generalist herbivore to navigate a complex nutritional landscape and mix many imbalanced foods to achieve balanced cultivar provisioning.


2020 ◽  
Vol 20 (4) ◽  
pp. 173-184
Author(s):  
Nabaneeta Saha ◽  
Malini Kundu ◽  
Goutam K. Saha ◽  
Gautam Aditya

AbstractThe indirect interactions among multiple prey sharing a common predator characterize apparent competition. In conservation biological control involving mosquitoes and controphic prey against generalist insect predators, apparent competition may be a crucial factor determining the extent of success. The possible influence of apparent competition on mosquito prey consumption by three water bugs (Heteroptera: Nepidae): Ranatra elongata, Ranatra filiformis, and Laccotrephes griseus was assessed under laboratory conditions. Tadpoles (Duttaphrynus melanostictus), chironomid larvae, snails (Racesina luteola) and fish fingerlings (Labeo rohita) were considered as alternative prey under two prey or multi prey conditions against instar IV larvae of Culex quinquefasciatus as target prey. Under two prey conditions all the predators exhibited a preference (significant Manly’s α) for mosquito larvae, against fish fingerlings by R. filiformis. In the presence of multiple prey, mosquito larvae were selected by the predators. Using the ratio of mosquito selectivity in two prey and multi-prey conditions as a measure of apparent competition, chironomid larvae had greatest effect in suppressing mosquito selectivity for R. elongata, and fish fingerlings for R. filiformis and L. griseus. It seems that the prey preference of R. elongata, R. filiformis and L. griseus may differentially evoke apparent competition among the prey. In the aquatic community where these predators and prey coexist, mosquito larvae may benefit from apparent competition that reduces their vulnerability to predators. The identity of the alternative prey appears to be an important factor for shielding the vulnerability of mosquito prey to the generalist insect predators.


Sign in / Sign up

Export Citation Format

Share Document