Deep learning based prediction of reversible HAT/HDAC-specific lysine acetylation

2019 ◽  
Vol 21 (5) ◽  
pp. 1798-1805 ◽  
Author(s):  
Kai Yu ◽  
Qingfeng Zhang ◽  
Zekun Liu ◽  
Yimeng Du ◽  
Xinjiao Gao ◽  
...  

Abstract Protein lysine acetylation regulation is an important molecular mechanism for regulating cellular processes and plays critical physiological and pathological roles in cancers and diseases. Although massive acetylation sites have been identified through experimental identification and high-throughput proteomics techniques, their enzyme-specific regulation remains largely unknown. Here, we developed the deep learning-based protein lysine acetylation modification prediction (Deep-PLA) software for histone acetyltransferase (HAT)/histone deacetylase (HDAC)-specific acetylation prediction based on deep learning. Experimentally identified substrates and sites of several HATs and HDACs were curated from the literature to generate enzyme-specific data sets. We integrated various protein sequence features with deep neural network and optimized the hyperparameters with particle swarm optimization, which achieved satisfactory performance. Through comparisons based on cross-validations and testing data sets, the model outperformed previous studies. Meanwhile, we found that protein–protein interactions could enrich enzyme-specific acetylation regulatory relations and visualized this information in the Deep-PLA web server. Furthermore, a cross-cancer analysis of acetylation-associated mutations revealed that acetylation regulation was intensively disrupted by mutations in cancers and heavily implicated in the regulation of cancer signaling. These prediction and analysis results might provide helpful information to reveal the regulatory mechanism of protein acetylation in various biological processes to promote the research on prognosis and treatment of cancers. Therefore, the Deep-PLA predictor and protein acetylation interaction networks could provide helpful information for studying the regulation of protein acetylation. The web server of Deep-PLA could be accessed at http://deeppla.cancerbio.info.

2020 ◽  
Vol 27 (5) ◽  
pp. 359-369 ◽  
Author(s):  
Cheng Shi ◽  
Jiaxing Chen ◽  
Xinyue Kang ◽  
Guiling Zhao ◽  
Xingzhen Lao ◽  
...  

: Protein-related interaction prediction is critical to understanding life processes, biological functions, and mechanisms of drug action. Experimental methods used to determine proteinrelated interactions have always been costly and inefficient. In recent years, advances in biological and medical technology have provided us with explosive biological and physiological data, and deep learning-based algorithms have shown great promise in extracting features and learning patterns from complex data. At present, deep learning in protein research has emerged. In this review, we provide an introductory overview of the deep neural network theory and its unique properties. Mainly focused on the application of this technology in protein-related interactions prediction over the past five years, including protein-protein interactions prediction, protein-RNA\DNA, Protein– drug interactions prediction, and others. Finally, we discuss some of the challenges that deep learning currently faces.


2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


2021 ◽  
Author(s):  
Zhong-Qiu Yu ◽  
Xiao-Man Liu ◽  
Dan Zhao ◽  
Dan-Dan Xu ◽  
Li-Lin Du

Protein-protein interactions are vital for executing nearly all cellular processes. To facilitate the detection of protein-protein interactions in living cells of the fission yeast Schizosaccharomyces pombe, here we present an efficient and convenient method termed the Pil1 co-tethering assay. In its basic form, we tether a bait protein to mCherry-tagged Pil1, which forms cortical filamentary structures, and examine whether a GFP-tagged prey protein colocalizes with the bait. We demonstrate that this assay is capable of detecting pairwise protein-protein interactions of cytosolic proteins and nuclear proteins. Furthermore, we show that this assay can be used for detecting not only binary protein-protein interactions, but also ternary and quaternary protein-protein interactions. Using this assay, we systematically characterized the protein-protein interactions in the Atg1 complex and in the phosphatidylinositol 3-kinase (PtdIns3K) complexes and found that Atg38 is incorporated into the PtdIns3K complex I via an Atg38-Vps34 interaction. Our data show that this assay is a useful and versatile tool and should be added to the routine toolbox of fission yeast researchers.


2018 ◽  
Vol 14 ◽  
pp. 2881-2896 ◽  
Author(s):  
Laura Carro

Antibiotics are potent pharmacological weapons against bacterial infections; however, the growing antibiotic resistance of microorganisms is compromising the efficacy of the currently available pharmacotherapies. Even though antimicrobial resistance is not a new problem, antibiotic development has failed to match the growth of resistant pathogens and hence, it is highly critical to discover new anti-infective drugs with novel mechanisms of action which will help reducing the burden of multidrug-resistant microorganisms. Protein–protein interactions (PPIs) are involved in a myriad of vital cellular processes and have become an attractive target to treat diseases. Therefore, targeting PPI networks in bacteria may offer a new and unconventional point of intervention to develop novel anti-infective drugs which can combat the ever-increasing rate of multidrug-resistant bacteria. This review describes the progress achieved towards the discovery of molecules that disrupt PPI systems in bacteria for which inhibitors have been identified and whose targets could represent an alternative lead discovery strategy to obtain new anti-infective molecules.


2018 ◽  
Author(s):  
Leticia Dias Lima Jedlicka ◽  
Sheila Barreto Guterres ◽  
Aleksandro Martins Balbino ◽  
Giuseppe Bruno Neto ◽  
Richardt Gama Landgraf ◽  
...  

Background: Acetylation alters several protein properties including molecular weight, stability, enzymatic activity, protein-protein interactions, and other biological functions. Our previous findings demonstrating that diacetyl/peroxynitrite can acetylate L-lysine, L-histidine, and albumin in vitro led us to investigate whether diacetyl-treated rats suffer protein acetylation as well. Methods: Wistar rats were administered diacetyl daily for 4 weeks, after which they were sacrificed, and their lung proteins were extracted to be analysed by Nano-LC-MS/MS (Q-TOF). A C18 reversed-phase column and gradient elution with formic acid/acetonitrile solutions from 2 to 50% over 150 min were used to separate the proteins. Protein detection was performed using a microTOF-Q II (QTOF) equipped with captive source and an electrospray-ionization source. The data from mass spectrometry were processed using a Compass 1.7 and analyzed using Protein Scape, software that uses Mascot algorithms to perform protein searches. Results: A set of 3162 acetylated peptides derived from 351 acetylated proteins in the diacetyl-treated group was identified. Among them, 23 targeted proteins were significantly more acetylated in the diacetyl-treated group than in the PBS control. Protein acetylation of the group treated with 540 mg/kg/day of diacetyl was corroborated by Western blotting analysis. Conclusions: These data support our hypothesis that diacetyl exposure in animals may lead to the generation of acetyl radicals, compounds that attach to proteins, affecting their functions and triggering adverse health problems.


2020 ◽  
Vol 21 (16) ◽  
pp. 5638
Author(s):  
Jinhong Cho ◽  
Jinyoung Park ◽  
Eunice EunKyeong Kim ◽  
Eun Joo Song

Deubiquitinating enzymes regulate various cellular processes, particularly protein degradation, localization, and protein–protein interactions. The dysregulation of deubiquitinating enzyme (DUB) activity has been linked to several diseases; however, the function of many DUBs has not been identified. Therefore, the development of methods to assess DUB activity is important to identify novel DUBs, characterize DUB selectivity, and profile dynamic DUB substrates. Here, we review various methods of evaluating DUB activity using cell lysates or purified DUBs, as well as the types of probes used in these methods. In addition, we introduce some techniques that can deliver DUB probes into the cells and cell-permeable activity-based probes to directly visualize and quantify DUB activity in live cells. This review could contribute to the development of DUB inhibitors by providing important information on the characteristics and applications of various probes used to evaluate and detect DUB activity in vitro and in vivo.


2019 ◽  
Vol 20 (4) ◽  
pp. 978 ◽  
Author(s):  
Zhao-Hui Zhan ◽  
Li-Na Jia ◽  
Yong Zhou ◽  
Li-Ping Li ◽  
Hai-Cheng Yi

The interactions between ncRNAs and proteins are critical for regulating various cellular processes in organisms, such as gene expression regulations. However, due to limitations, including financial and material consumptions in recent experimental methods for predicting ncRNA and protein interactions, it is essential to propose an innovative and practical approach with convincing performance of prediction accuracy. In this study, based on the protein sequences from a biological perspective, we put forward an effective deep learning method, named BGFE, to predict ncRNA and protein interactions. Protein sequences are represented by bi-gram probability feature extraction method from Position Specific Scoring Matrix (PSSM), and for ncRNA sequences, k-mers sparse matrices are employed to represent them. Furthermore, to extract hidden high-level feature information, a stacked auto-encoder network is employed with the stacked ensemble integration strategy. We evaluate the performance of the proposed method by using three datasets and a five-fold cross-validation after classifying the features through the random forest classifier. The experimental results clearly demonstrate the effectiveness and the prediction accuracy of our approach. In general, the proposed method is helpful for ncRNA and protein interacting predictions and it provides some serviceable guidance in future biological research.


2014 ◽  
Vol 42 (W1) ◽  
pp. W285-W289 ◽  
Author(s):  
Alper Baspinar ◽  
Engin Cukuroglu ◽  
Ruth Nussinov ◽  
Ozlem Keskin ◽  
Attila Gursoy

Sign in / Sign up

Export Citation Format

Share Document