A secondary and tertiary structure editor for nucleic acids

1988 ◽  
Vol 4 (1) ◽  
pp. 143-146
Author(s):  
Robert Cedergren ◽  
Daniel Gautheret ◽  
Guy Lapalme ◽  
François Major
Biochemistry ◽  
1976 ◽  
Vol 15 (20) ◽  
pp. 4370-4377 ◽  
Author(s):  
P. H. Bolton ◽  
C. R. Jones ◽  
D. Bastedo-Lerner ◽  
K. L. Wong ◽  
D. R. Kearns

1986 ◽  
Vol 238 (2) ◽  
pp. 485-490 ◽  
Author(s):  
S R Martin ◽  
P M Bayley

Near-u.v. and far-u.v. c.d. spectra of bovine testis calmodulin and its tryptic fragments (TR1C, N-terminal half, residues 1-77, and TR2C, C-terminal half, residues 78-148) were recorded in metal-ion-free buffer and in the presence of saturating concentrations of Ca2+ or Cd2+ under a range of different solvent conditions. The results show the following: if there is any interaction between the N-terminal and C-terminal halves of calmodulin, it has not apparent effect on the secondary or tertiary structure of either half; the conformational changes induced by Ca2+ or Cd2+ are substantially greater in TR2C than they are in TR1C; the presence of Ca2+ or Cd2+ confers considerable stability with respect to urea-induced denaturation, both for the whole molecule and for either of the tryptic fragments; a thermally induced transition occurs in whole calmodulin at temperatures substantially below the temperature of major thermal unfolding, both in the presence and in the absence of added metal ion; the effects of Cd2+ are identical with those of Ca2+ under all conditions studied.


2016 ◽  
Author(s):  
Zarrin Basharat ◽  
Deeba Noreen Baig ◽  
Azra Yasmin

Action of arsenate reductase is crucial for the survival of an organism in arsenic polluted area. Pteris vittata, also known as Chinese ladder brake, was the first identified arsenic hyperaccumulating fern with the capability to convert [As(V)] to arsenite [As(III)]. This study aims at sequence analysis of the most important protein of the arsenic reduction mechanism in this specie. Phosphorylation potential of the protein along with possible interplay of phosphorylation with O-β-GlcNAcylation was predicted using neural network based webservers. Secondary and tertiary structure of arsenate reductase was then analysed. Active site region of the protein comprised a rhodanese-like domain. Cursory dynamics simulation revealed that folds remained conserved in the rhodanese main but variations were observed in the structure in other regions. This information sheds light on the various characteristics of the protein and may be useful to enzymologists working on the improvement of its traits for arsenic reduction.


Sign in / Sign up

Export Citation Format

Share Document