scholarly journals Boosting the extraction of elementary flux modes in genome-scale metabolic networks using the linear programming approach

2020 ◽  
Vol 36 (14) ◽  
pp. 4163-4170
Author(s):  
Francisco Guil ◽  
José F Hidalgo ◽  
José M García

Abstract Motivation Elementary flux modes (EFMs) are a key tool for analyzing genome-scale metabolic networks, and several methods have been proposed to compute them. Among them, those based on solving linear programming (LP) problems are known to be very efficient if the main interest lies in computing large enough sets of EFMs. Results Here, we propose a new method called EFM-Ta that boosts the efficiency rate by analyzing the information provided by the LP solver. We base our method on a further study of the final tableau of the simplex method. By performing additional elementary steps and avoiding trivial solutions consisting of two cycles, we obtain many more EFMs for each LP problem posed, improving the efficiency rate of previously proposed methods by more than one order of magnitude. Availability and implementation Software is freely available at https://github.com/biogacop/Boost_LP_EFM. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Vol 36 (15) ◽  
pp. 4309-4315
Author(s):  
Gayathri Sambamoorthy ◽  
Karthik Raman

Abstract Motivation Genome-scale metabolic models are widely constructed and studied for understanding various design principles underlying metabolism, predominantly redundancy. Metabolic networks are highly redundant and it is possible to minimize the metabolic networks into smaller networks that retain the functionality of the original network. Results Here, we establish a new method, MinReact that systematically removes reactions from a given network to identify minimal reactome(s). We show that our method identifies smaller minimal reactomes than existing methods and also scales well to larger metabolic networks. Notably, our method exploits known aspects of network structure and redundancy to identify multiple minimal metabolic networks. We illustrate the utility of MinReact by identifying multiple minimal networks for 77 organisms from the BiGG database. We show that these multiple minimal reactomes arise due to the presence of compensatory reactions/pathways. We further employed MinReact for a case study to identify the minimal reactomes of different organisms in both glucose and xylose minimal environments. Identification of minimal reactomes of these different organisms elucidate that they exhibit varying levels of redundancy. A comparison of the minimal reactomes on glucose and xylose illustrates that the differences in the reactions required to sustain growth on either medium. Overall, our algorithm provides a rapid and reliable way to identify minimal subsets of reactions that are essential for survival, in a systematic manner. Availability and implementation Algorithm is available from https://github.com/RamanLab/MinReact. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (15) ◽  
pp. 2618-2625 ◽  
Author(s):  
Annika Röhl ◽  
Tanguy Riou ◽  
Alexander Bockmayr

Abstract Motivation Minimal cut sets (MCSs) for metabolic networks are sets of reactions which, if they are removed from the network, prevent a target reaction from carrying flux. To compute MCSs different methods exist, which may fail to find sufficiently many MCSs for larger genome-scale networks. Results Here we introduce irreversible minimal cut sets (iMCSs). These are MCSs that consist of irreversible reactions only. The advantage of iMCSs is that they can be computed by projecting the flux cone of the metabolic network on the set of irreversible reactions, which usually leads to a smaller cone. Using oriented matroid theory, we show how the projected cone can be computed efficiently and how this can be applied to find iMCSs even in large genome-scale networks. Availability and implementation Software is freely available at https://sourceforge.net/projects/irreversibleminimalcutsets/. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (21) ◽  
pp. 4405-4407 ◽  
Author(s):  
Steven Monger ◽  
Michael Troup ◽  
Eddie Ip ◽  
Sally L Dunwoodie ◽  
Eleni Giannoulatou

Abstract Motivation In silico prediction tools are essential for identifying variants which create or disrupt cis-splicing motifs. However, there are limited options for genome-scale discovery of splice-altering variants. Results We have developed Spliceogen, a highly scalable pipeline integrating predictions from some of the individually best performing models for splice motif prediction: MaxEntScan, GeneSplicer, ESRseq and Branchpointer. Availability and implementation Spliceogen is available as a command line tool which accepts VCF/BED inputs and handles both single nucleotide variants (SNVs) and indels (https://github.com/VCCRI/Spliceogen). SNV databases with prediction scores are also available, covering all possible SNVs at all genomic positions within all Gencode-annotated multi-exon transcripts. Supplementary information Supplementary data are available at Bioinformatics online.


2015 ◽  
Vol 32 (6) ◽  
pp. 867-874 ◽  
Author(s):  
Matthew B. Biggs ◽  
Jason A. Papin

Abstract Motivation: Most microbes on Earth have never been grown in a laboratory, and can only be studied through DNA sequences. Environmental DNA sequence samples are complex mixtures of fragments from many different species, often unknown. There is a pressing need for methods that can reliably reconstruct genomes from complex metagenomic samples in order to address questions in ecology, bioremediation, and human health. Results: We present the SOrting by NEtwork Completion (SONEC) approach for assigning reactions to incomplete metabolic networks based on a metabolite connectivity score. We successfully demonstrate proof of concept in a set of 100 genome-scale metabolic network reconstructions, and delineate the variables that impact reaction assignment accuracy. We further demonstrate the integration of SONEC with existing approaches (such as cross-sample scaffold abundance profile clustering) on a set of 94 metagenomic samples from the Human Microbiome Project. We show that not only does SONEC aid in reconstructing species-level genomes, but it also improves functional predictions made with the resulting metabolic networks. Availability and implementation: The datasets and code presented in this work are available at: https://bitbucket.org/mattbiggs/sorting_by_network_completion/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Hongzhong Lu ◽  
Zhengming Zhu ◽  
Eduard J Kerkhoven ◽  
Jens Nielsen

AbstractSummaryFALCONET (FAst visuaLisation of COmputational NETworks) enables the automatic for-mation and visualisation of metabolic maps from genome-scale models with R and CellDesigner, readily facilitating the visualisation of multi-layers omics datasets in the context of metabolic networks.MotivationUntil now, numerous GEMs have been reconstructed and used as scaffolds to conduct integrative omics analysis and in silico strain design. Due to the large network size of GEMs, it is challenging to produce and visualize these networks as metabolic maps for further in-depth analyses.ResultsHere, we presented the R package - FALCONET, which facilitates drawing and visualizing metabolic maps in an automatic manner. This package will benefit the research community by allowing a wider use of GEMs in systems biology.Availability and implementationFALCONET is available on https://github.com/SysBioChalmers/FALCONET and released under the MIT [email protected] informationSupplementary data are available online.


2009 ◽  
Vol 25 (23) ◽  
pp. 3158-3165 ◽  
Author(s):  
Luis F. de Figueiredo ◽  
Adam Podhorski ◽  
Angel Rubio ◽  
Christoph Kaleta ◽  
John E. Beasley ◽  
...  

2020 ◽  
Author(s):  
Sebastian Deorowicz ◽  
Agnieszka Danek

AbstractSummaryThe VCF files with results of sequencing projects take a lot of space. We propose VCFShark squeezing them up to an order of magnitude better than the de facto standards (gzipped VCF and BCF).Availability and Implementationhttps://github.com/refresh-bio/[email protected] informationSupplementary data are available at publisher’s Web site.


Sign in / Sign up

Export Citation Format

Share Document