scholarly journals Direct calculation of elementary flux modes satisfying several biological constraints in genome-scale metabolic networks

2014 ◽  
Vol 30 (15) ◽  
pp. 2197-2203 ◽  
Author(s):  
Jon Pey ◽  
Francisco J. Planes
2020 ◽  
Vol 36 (14) ◽  
pp. 4163-4170
Author(s):  
Francisco Guil ◽  
José F Hidalgo ◽  
José M García

Abstract Motivation Elementary flux modes (EFMs) are a key tool for analyzing genome-scale metabolic networks, and several methods have been proposed to compute them. Among them, those based on solving linear programming (LP) problems are known to be very efficient if the main interest lies in computing large enough sets of EFMs. Results Here, we propose a new method called EFM-Ta that boosts the efficiency rate by analyzing the information provided by the LP solver. We base our method on a further study of the final tableau of the simplex method. By performing additional elementary steps and avoiding trivial solutions consisting of two cycles, we obtain many more EFMs for each LP problem posed, improving the efficiency rate of previously proposed methods by more than one order of magnitude. Availability and implementation Software is freely available at https://github.com/biogacop/Boost_LP_EFM. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2009 ◽  
Vol 25 (23) ◽  
pp. 3158-3165 ◽  
Author(s):  
Luis F. de Figueiredo ◽  
Adam Podhorski ◽  
Angel Rubio ◽  
Christoph Kaleta ◽  
John E. Beasley ◽  
...  

2011 ◽  
Vol 27 (16) ◽  
pp. 2256-2262 ◽  
Author(s):  
Siu Hung Joshua Chan ◽  
Ping Ji

FEBS Open Bio ◽  
2021 ◽  
Author(s):  
You‐Tyun Wang ◽  
Min‐Ru Lin ◽  
Wei‐Chen Chen ◽  
Wu‐Hsiung Wu ◽  
Feng‐Sheng Wang

2021 ◽  
Author(s):  
Ecehan Abdik ◽  
Tunahan Cakir

Genome-scale metabolic networks enable systemic investigation of metabolic alterations caused by diseases by providing interpretation of omics data. Although Mus musculus (mouse) is one of the most commonly used model...


2012 ◽  
Vol 13 (1) ◽  
Author(s):  
Abdelhalim Larhlimi ◽  
Laszlo David ◽  
Joachim Selbig ◽  
Alexander Bockmayr

2010 ◽  
Vol 4 (1) ◽  
pp. 114 ◽  
Author(s):  
Karin Radrich ◽  
Yoshimasa Tsuruoka ◽  
Paul Dobson ◽  
Albert Gevorgyan ◽  
Neil Swainston ◽  
...  

2017 ◽  
Vol 9 (10) ◽  
pp. 830-835 ◽  
Author(s):  
Xingxing Jian ◽  
Ningchuan Li ◽  
Qian Chen ◽  
Qiang Hua

Reconstruction and application of genome-scale metabolic models (GEMs) have facilitated metabolic engineering by providing a platform on which systematic computational analysis of metabolic networks can be performed.


Sign in / Sign up

Export Citation Format

Share Document