scholarly journals MinReact: a systematic approach for identifying minimal metabolic networks

2020 ◽  
Vol 36 (15) ◽  
pp. 4309-4315
Author(s):  
Gayathri Sambamoorthy ◽  
Karthik Raman

Abstract Motivation Genome-scale metabolic models are widely constructed and studied for understanding various design principles underlying metabolism, predominantly redundancy. Metabolic networks are highly redundant and it is possible to minimize the metabolic networks into smaller networks that retain the functionality of the original network. Results Here, we establish a new method, MinReact that systematically removes reactions from a given network to identify minimal reactome(s). We show that our method identifies smaller minimal reactomes than existing methods and also scales well to larger metabolic networks. Notably, our method exploits known aspects of network structure and redundancy to identify multiple minimal metabolic networks. We illustrate the utility of MinReact by identifying multiple minimal networks for 77 organisms from the BiGG database. We show that these multiple minimal reactomes arise due to the presence of compensatory reactions/pathways. We further employed MinReact for a case study to identify the minimal reactomes of different organisms in both glucose and xylose minimal environments. Identification of minimal reactomes of these different organisms elucidate that they exhibit varying levels of redundancy. A comparison of the minimal reactomes on glucose and xylose illustrates that the differences in the reactions required to sustain growth on either medium. Overall, our algorithm provides a rapid and reliable way to identify minimal subsets of reactions that are essential for survival, in a systematic manner. Availability and implementation Algorithm is available from https://github.com/RamanLab/MinReact. Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Author(s):  
Gayathri Sambamoorthy ◽  
Karthik Raman

AbstractGenome-scale metabolic models are widely constructed and studied for understanding various design principles underlying metabolism, predominantly redundancy. Metabolic networks are highly redundant and it is possible to minimise the metabolic networks into smaller networks that retain the functionality of the original network. Here, we establish a new method, MinReact that systematically removes reactions from a given network to identify minimal reactome(s). We show that our method identifies smaller minimal reactomes than existing methods and also scales well to larger metabolic networks. Notably, our method exploits known aspects of network structure and redundancy to identify multiple minimal metabolic networks. We illustrate the utility of MinReact by identifying multiple minimal networks for 74 organisms from the BiGG database. We show that these multiple minimal reactomes arise due to the presence of compensatory reactions/pathways. We further employed MinReact for a case study to identify the minimal reactomes of different organisms in both glucose and xylose minimal environments. Identification of minimal reactomes of these different organisms elucidate that they exhibit varying levels of redundancy. A comparison of the minimal reactomes on glucose and xylose illustrate that the differences in the reactions required to sustain growth on either medium. Overall, our algorithm provides a rapid and reliable way to identify minimal subsets of reactions that are essential for survival, in a systematic manner.Author summaryAn organism’s metabolism is routinely modelled by a metabolic network, which consists of all the enzyme-catalysed reactions that occur in the organism. These reactions are numerous, majorly due to the presence of redundant reactions that perform compensatory functions. Also, not all the reactions are functional in all environments and are unique to the environmental conditions. So, it is possible to minimise such large metabolic networks into smaller functional networks. Such minimal networks help in easier dissection of the capabilities of the network and also further our understanding of the various redundancies and other design principles occurring in these networks. Here, we have developed a new algorithm for identification of such minimal networks, that is efficient and superior to existing algorithms. We show the utility of our algorithm in identifying such minimal sets of reactions for many known metabolic networks. We have also shown a case study, using our algorithm to identify such minimal networks for different organisms in varied nutrient conditions.


2020 ◽  
Vol 36 (14) ◽  
pp. 4163-4170
Author(s):  
Francisco Guil ◽  
José F Hidalgo ◽  
José M García

Abstract Motivation Elementary flux modes (EFMs) are a key tool for analyzing genome-scale metabolic networks, and several methods have been proposed to compute them. Among them, those based on solving linear programming (LP) problems are known to be very efficient if the main interest lies in computing large enough sets of EFMs. Results Here, we propose a new method called EFM-Ta that boosts the efficiency rate by analyzing the information provided by the LP solver. We base our method on a further study of the final tableau of the simplex method. By performing additional elementary steps and avoiding trivial solutions consisting of two cycles, we obtain many more EFMs for each LP problem posed, improving the efficiency rate of previously proposed methods by more than one order of magnitude. Availability and implementation Software is freely available at https://github.com/biogacop/Boost_LP_EFM. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (15) ◽  
pp. 2618-2625 ◽  
Author(s):  
Annika Röhl ◽  
Tanguy Riou ◽  
Alexander Bockmayr

Abstract Motivation Minimal cut sets (MCSs) for metabolic networks are sets of reactions which, if they are removed from the network, prevent a target reaction from carrying flux. To compute MCSs different methods exist, which may fail to find sufficiently many MCSs for larger genome-scale networks. Results Here we introduce irreversible minimal cut sets (iMCSs). These are MCSs that consist of irreversible reactions only. The advantage of iMCSs is that they can be computed by projecting the flux cone of the metabolic network on the set of irreversible reactions, which usually leads to a smaller cone. Using oriented matroid theory, we show how the projected cone can be computed efficiently and how this can be applied to find iMCSs even in large genome-scale networks. Availability and implementation Software is freely available at https://sourceforge.net/projects/irreversibleminimalcutsets/. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (21) ◽  
pp. 4405-4407 ◽  
Author(s):  
Steven Monger ◽  
Michael Troup ◽  
Eddie Ip ◽  
Sally L Dunwoodie ◽  
Eleni Giannoulatou

Abstract Motivation In silico prediction tools are essential for identifying variants which create or disrupt cis-splicing motifs. However, there are limited options for genome-scale discovery of splice-altering variants. Results We have developed Spliceogen, a highly scalable pipeline integrating predictions from some of the individually best performing models for splice motif prediction: MaxEntScan, GeneSplicer, ESRseq and Branchpointer. Availability and implementation Spliceogen is available as a command line tool which accepts VCF/BED inputs and handles both single nucleotide variants (SNVs) and indels (https://github.com/VCCRI/Spliceogen). SNV databases with prediction scores are also available, covering all possible SNVs at all genomic positions within all Gencode-annotated multi-exon transcripts. Supplementary information Supplementary data are available at Bioinformatics online.


2015 ◽  
Vol 32 (6) ◽  
pp. 867-874 ◽  
Author(s):  
Matthew B. Biggs ◽  
Jason A. Papin

Abstract Motivation: Most microbes on Earth have never been grown in a laboratory, and can only be studied through DNA sequences. Environmental DNA sequence samples are complex mixtures of fragments from many different species, often unknown. There is a pressing need for methods that can reliably reconstruct genomes from complex metagenomic samples in order to address questions in ecology, bioremediation, and human health. Results: We present the SOrting by NEtwork Completion (SONEC) approach for assigning reactions to incomplete metabolic networks based on a metabolite connectivity score. We successfully demonstrate proof of concept in a set of 100 genome-scale metabolic network reconstructions, and delineate the variables that impact reaction assignment accuracy. We further demonstrate the integration of SONEC with existing approaches (such as cross-sample scaffold abundance profile clustering) on a set of 94 metagenomic samples from the Human Microbiome Project. We show that not only does SONEC aid in reconstructing species-level genomes, but it also improves functional predictions made with the resulting metabolic networks. Availability and implementation: The datasets and code presented in this work are available at: https://bitbucket.org/mattbiggs/sorting_by_network_completion/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Hongzhong Lu ◽  
Zhengming Zhu ◽  
Eduard J Kerkhoven ◽  
Jens Nielsen

AbstractSummaryFALCONET (FAst visuaLisation of COmputational NETworks) enables the automatic for-mation and visualisation of metabolic maps from genome-scale models with R and CellDesigner, readily facilitating the visualisation of multi-layers omics datasets in the context of metabolic networks.MotivationUntil now, numerous GEMs have been reconstructed and used as scaffolds to conduct integrative omics analysis and in silico strain design. Due to the large network size of GEMs, it is challenging to produce and visualize these networks as metabolic maps for further in-depth analyses.ResultsHere, we presented the R package - FALCONET, which facilitates drawing and visualizing metabolic maps in an automatic manner. This package will benefit the research community by allowing a wider use of GEMs in systems biology.Availability and implementationFALCONET is available on https://github.com/SysBioChalmers/FALCONET and released under the MIT [email protected] informationSupplementary data are available online.


2019 ◽  
Vol 35 (14) ◽  
pp. i615-i623 ◽  
Author(s):  
Reza Miraskarshahi ◽  
Hooman Zabeti ◽  
Tamon Stephen ◽  
Leonid Chindelevitch

Abstract Motivation Constraint-based modeling of metabolic networks helps researchers gain insight into the metabolic processes of many organisms, both prokaryotic and eukaryotic. Minimal cut sets (MCSs) are minimal sets of reactions whose inhibition blocks a target reaction in a metabolic network. Most approaches for finding the MCSs in constrained-based models require, either as an intermediate step or as a byproduct of the calculation, the computation of the set of elementary flux modes (EFMs), a convex basis for the valid flux vectors in the network. Recently, Ballerstein et al. proposed a method for computing the MCSs of a network without first computing its EFMs, by creating a dual network whose EFMs are a superset of the MCSs of the original network. However, their dual network is always larger than the original network and depends on the target reaction. Here we propose the construction of a different dual network, which is typically smaller than the original network and is independent of the target reaction, for the same purpose. We prove the correctness of our approach, minimal coordinated support (MCS2), and describe how it can be modified to compute the few smallest MCSs for a given target reaction. Results We compare MCS2 to the method of Ballerstein et al. and two other existing methods. We show that MCS2 succeeds in calculating the full set of MCSs in many models where other approaches cannot finish within a reasonable amount of time. Thus, in addition to its theoretical novelty, our approach provides a practical advantage over existing methods. Availability and implementation MCS2 is freely available at https://github.com/RezaMash/MCS under the GNU 3.0 license. Supplementary information Supplementary data are available at Bioinformatics online.


2014 ◽  
Vol 12 (05) ◽  
pp. 1450028 ◽  
Author(s):  
Abolfazl Rezvan ◽  
Sayed-Amir Marashi ◽  
Changiz Eslahchi

A metabolic network model provides a computational framework to study the metabolism of a cell at the system level. Due to their large sizes and complexity, rational decomposition of these networks into subsystems is a strategy to obtain better insight into the metabolic functions. Additionally, decomposing metabolic networks paves the way to use computational methods that will be otherwise very slow when run on the original genome-scale network. In the present study, we propose FCDECOMP decomposition method based on flux coupling relations (FCRs) between pairs of reaction fluxes. This approach utilizes a genetic algorithm (GA) to obtain subsystems that can be analyzed in isolation, i.e. without considering the reactions of the original network in the analysis. Therefore, we propose that our method is useful for discovering biologically meaningful modules in metabolic networks. As a case study, we show that when this method is applied to the metabolic networks of barley seeds and yeast, the modules are in good agreement with the biological compartments of these networks.


2016 ◽  
Vol 2 (1) ◽  
pp. 30 ◽  
Author(s):  
José Francisco Hidalgo ◽  
Francisco Guil ◽  
José Manuel García

Genome-scale metabolic networks let us understand the behaviour of the metabolism in the cells of living organisms. The availability of great amounts of such data gives the scientific community the opportunity to infer in silico new metabolic knowledge. Elementary Flux Modes (EFM) are minimal contained pathways or subsets of a metabolic network that are very useful to achieving the comprehension of a very specific metabolic function (as well as dysfunctions), and to get the knowledge to develop new drugs. Metabolic networks can have large connectivity and, therefore, EFMs resolution faces a combinational explosion challenge to be solved. In this paper we propose a new approach to obtain EFMs based on graph theory, the balanced graph concept and the shortest path between end nodes. Our proposal uses the shortest path between end nodes (input and output nodes) that finds all the pathways in the metabolic network and is able to prioritise the pathway search accounting the biological mean pursued. Our technique has two phases, the exploration phase and the characterisation one, and we show how it works in a well-known case study. We also demonstrate the relevance of the concept of balanced graph to achieve to the full list of EFMs.


2019 ◽  
Vol 36 (8) ◽  
pp. 2616-2617
Author(s):  
Andre Schultz ◽  
Rehan Akbani

Abstract Summary Here we present a browser-based Semi-Automated Metabolic Map Illustrator (SAMMI) for the visualization of metabolic networks. While automated features allow for easy network partitioning, navigation, and node positioning, SAMMI also offers a wide array of manual map editing features. This combination allows for fast, context-specific visualization of metabolic networks as well as the development of standardized, large-scale, visually appealing maps. The implementation of SAMMI with popular constraint-based modeling toolboxes also allows for effortless visualization of simulation results of genome-scale metabolic models. Availability and implementation SAMMI has been implemented as a standalone web-based tool and as plug-ins for the COBRA and COBRApy toolboxes. SAMMI and its COBRA plugins are available under the GPL 3.0 license and are available along with documentation, tutorials, and source code at www.SammiTool.com. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document