scholarly journals Colour deconvolution: stain unmixing in histological imaging

Author(s):  
Gabriel Landini ◽  
Giovanni Martinelli ◽  
Filippo Piccinini

Abstract Motivation Microscopy images of stained cells and tissues play a central role in most biomedical experiments and routine histopathology. Storing colour histological images digitally opens the possibility to process numerically colour distribution and intensity to extract quantitative data. Among those numerical procedures are colour deconvolution, which enable decomposing an RGB image into channels representing the optical absorbance and transmittance of the dyes when their RGB representation is known. Consequently, a range of new applications become possible for morphological and histochemical segmentation, automated marker localization and image enhancement. Availability and implementation Colour deconvolution is presented here in two open-source forms: a MATLAB program/function and an ImageJ plugin written in Java. Both versions run in Windows, Macintosh and UNIX-based systems under the respective platforms. Source code and further documentation are available at: https://blog.bham.ac.uk/intellimic/g-landini-software/colour-deconvolution-2/. Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
Pavel Beran ◽  
Dagmar Stehlíková ◽  
Stephen P Cohen ◽  
Vladislav Čurn

Abstract Summary Searching for amino acid or nucleic acid sequences unique to one organism may be challenging depending on size of the available datasets. K-mer elimination by cross-reference (KEC) allows users to quickly and easily find unique sequences by providing target and non-target sequences. Due to its speed, it can be used for datasets of genomic size and can be run on desktop or laptop computers with modest specifications. Availability and implementation KEC is freely available for non-commercial purposes. Source code and executable binary files compiled for Linux, Mac and Windows can be downloaded from https://github.com/berybox/KEC. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Tomasz Zok

Abstract Motivation Biomolecular structures come in multiple representations and diverse data formats. Their incompatibility with the requirements of data analysis programs significantly hinders the analytics and the creation of new structure-oriented bioinformatic tools. Therefore, the need for robust libraries of data processing functions is still growing. Results BioCommons is an open-source, Java library for structural bioinformatics. It contains many functions working with the 2D and 3D structures of biomolecules, with a particular emphasis on RNA. Availability and implementation The library is available in Maven Central Repository and its source code is hosted on GitHub: https://github.com/tzok/BioCommons Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Réka Hollandi ◽  
Ákos Diósdi ◽  
Gábor Hollandi ◽  
Nikita Moshkov ◽  
Péter Horváth

AbstractAnnotatorJ combines single-cell identification with deep learning and manual annotation. Cellular analysis quality depends on accurate and reliable detection and segmentation of cells so that the subsequent steps of analyses e.g. expression measurements may be carried out precisely and without bias. Deep learning has recently become a popular way of segmenting cells, performing unimaginably better than conventional methods. However, such deep learning applications may be trained on a large amount of annotated data to be able to match the highest expectations. High-quality annotations are unfortunately expensive as they require field experts to create them, and often cannot be shared outside the lab due to medical regulations.We propose AnnotatorJ, an ImageJ plugin for the semi-automatic annotation of cells (or generally, objects of interest) on (not only) microscopy images in 2D that helps find the true contour of individual objects by applying U-Net-based pre-segmentation. The manual labour of hand-annotating cells can be significantly accelerated by using our tool. Thus, it enables users to create such datasets that could potentially increase the accuracy of state-of-the-art solutions, deep learning or otherwise, when used as training data.


2020 ◽  
Author(s):  
David Heller ◽  
Martin Vingron

AbstractMotivationWith the availability of new sequencing technologies, the generation of haplotype-resolved genome assemblies up to chromosome scale has become feasible. These assemblies capture the complete genetic information of both parental haplotypes, increase structural variant (SV) calling sensitivity and enable direct genotyping and phasing of SVs. Yet, existing SV callers are designed for haploid genome assemblies only, do not support genotyping or detect only a limited set of SV classes.ResultsWe introduce our method SVIM-asm for the detection and genotyping of six common classes of SVs from haploid and diploid genome assemblies. Compared against the only other existing SV caller for diploid assemblies, DipCall, SVIM-asm detects more SV classes and reached higher F1 scores for the detection of insertions and deletions on two recently published assemblies of the HG002 individual.Availability and ImplementationSVIM-asm has been implemented in Python and can be easily installed via bioconda. Its source code is available at github.com/eldariont/[email protected] informationSupplementary data are available online.


2020 ◽  
Author(s):  
N Goonasekera ◽  
A Mahmoud ◽  
J Chilton ◽  
E Afgan

AbstractSummaryThe existence of more than 100 public Galaxy servers with service quotas is indicative of the need for an increased availability of compute resources for Galaxy to use. The GalaxyCloudRunner enables a Galaxy server to easily expand its available compute capacity by sending user jobs to cloud resources. User jobs are routed to the acquired resources based on a set of configurable rules and the resources can be dynamically acquired from any of 4 popular cloud providers (AWS, Azure, GCP, or OpenStack) in an automated fashion.Availability and implementationGalaxyCloudRunner is implemented in Python and leverages Docker containers. The source code is MIT licensed and available at https://github.com/cloudve/galaxycloudrunner. The documentation is available at http://gcr.cloudve.org/.ContactEnis Afgan ([email protected])Supplementary informationNone


2019 ◽  
Vol 35 (22) ◽  
pp. 4754-4756 ◽  
Author(s):  
Egor Dolzhenko ◽  
Viraj Deshpande ◽  
Felix Schlesinger ◽  
Peter Krusche ◽  
Roman Petrovski ◽  
...  

Abstract Summary We describe a novel computational method for genotyping repeats using sequence graphs. This method addresses the long-standing need to accurately genotype medically important loci containing repeats adjacent to other variants or imperfect DNA repeats such as polyalanine repeats. Here we introduce a new version of our repeat genotyping software, ExpansionHunter, that uses this method to perform targeted genotyping of a broad class of such loci. Availability and implementation ExpansionHunter is implemented in C++ and is available under the Apache License Version 2.0. The source code, documentation, and Linux/macOS binaries are available at https://github.com/Illumina/ExpansionHunter/. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Stephan Struckmann ◽  
Mathias Ernst ◽  
Sarah Fischer ◽  
Nancy Mah ◽  
Georg Fuellen ◽  
...  

Abstract Motivation The difficulty to find new drugs and bring them to the market has led to an increased interest to find new applications for known compounds. Biological samples from many disease contexts have been extensively profiled by transcriptomics, and, intuitively, this motivates to search for compounds with a reversing effect on the expression of characteristic disease genes. However, disease effects may be cell line-specific and also depend on other factors, such as genetics and environment. Transcription profile changes between healthy and diseased cells relate in complex ways to profile changes gathered from cell lines upon stimulation with a drug. Despite these differences, we expect that there will be some similarity in the gene regulatory networks at play in both situations. The challenge is to match transcriptomes for both diseases and drugs alike, even though the exact molecular pathology/pharmacogenomics may not be known. Results We substitute the challenge to match a drug effect to a disease effect with the challenge to match a drug effect to the effect of the same drug at another concentration or in another cell line. This is welldefined, reproducible in vitro and in silico and extendable with external data. Based on the Connectivity Map (CMap) dataset, we combined 26 different similarity scores with six different heuristics to reduce the number of genes in the model. Such gene filters may also utilize external knowledge e.g. from biological networks. We found that no similarity score always outperforms all others for all drugs, but the Pearson correlation finds the same drug with the highest reliability. Results are improved by filtering for highly expressed genes and to a lesser degree for genes with large fold changes. Also a network-based reduction of contributing transcripts was beneficial, here implemented by the FocusHeuristics. We found no drop in prediction accuracy when reducing the whole transcriptome to the set of 1000 landmark genes of the CMap’s successor project Library of Integrated Network-based Cellular Signatures. All source code to re-analyze and extend the CMap data, the source code of heuristics, filters and their evaluation are available to propel the development of new methods for drug repurposing. Availability https://bitbucket.org/ibima/moldrugeffectsdb Contact [email protected] Supplementary information Supplementary data are available at Briefings in Bioinformatics online.


2019 ◽  
Vol 35 (19) ◽  
pp. 3839-3841 ◽  
Author(s):  
Artem Babaian ◽  
I Richard Thompson ◽  
Jake Lever ◽  
Liane Gagnier ◽  
Mohammad M Karimi ◽  
...  

Abstract Summary Transposable elements (TEs) influence the evolution of novel transcriptional networks yet the specific and meaningful interpretation of how TE-derived transcriptional initiation contributes to the transcriptome has been marred by computational and methodological deficiencies. We developed LIONS for the analysis of RNA-seq data to specifically detect and quantify TE-initiated transcripts. Availability and implementation Source code, container, test data and instruction manual are freely available at www.github.com/ababaian/LIONS. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (13) ◽  
pp. 4097-4098 ◽  
Author(s):  
Anna Breit ◽  
Simon Ott ◽  
Asan Agibetov ◽  
Matthias Samwald

Abstract Summary Recently, novel machine-learning algorithms have shown potential for predicting undiscovered links in biomedical knowledge networks. However, dedicated benchmarks for measuring algorithmic progress have not yet emerged. With OpenBioLink, we introduce a large-scale, high-quality and highly challenging biomedical link prediction benchmark to transparently and reproducibly evaluate such algorithms. Furthermore, we present preliminary baseline evaluation results. Availability and implementation Source code and data are openly available at https://github.com/OpenBioLink/OpenBioLink. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (21) ◽  
pp. 4525-4527 ◽  
Author(s):  
Alex X Lu ◽  
Taraneh Zarin ◽  
Ian S Hsu ◽  
Alan M Moses

Abstract Summary We introduce YeastSpotter, a web application for the segmentation of yeast microscopy images into single cells. YeastSpotter is user-friendly and generalizable, reducing the computational expertise required for this critical preprocessing step in many image analysis pipelines. Availability and implementation YeastSpotter is available at http://yeastspotter.csb.utoronto.ca/. Code is available at https://github.com/alexxijielu/yeast_segmentation. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document